Metamath Proof Explorer


Theorem binom1p

Description: Special case of the binomial theorem for ( 1 + A ) ^ N . (Contributed by Paul Chapman, 10-May-2007)

Ref Expression
Assertion binom1p AN01+AN=k=0N(Nk)Ak

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 binom 1AN01+AN=k=0N(Nk)1NkAk
3 1 2 mp3an1 AN01+AN=k=0N(Nk)1NkAk
4 fznn0sub k0NNk0
5 4 adantl AN0k0NNk0
6 5 nn0zd AN0k0NNk
7 1exp Nk1Nk=1
8 6 7 syl AN0k0N1Nk=1
9 8 oveq1d AN0k0N1NkAk=1Ak
10 simpl AN0A
11 elfznn0 k0Nk0
12 expcl Ak0Ak
13 10 11 12 syl2an AN0k0NAk
14 13 mullidd AN0k0N1Ak=Ak
15 9 14 eqtrd AN0k0N1NkAk=Ak
16 15 oveq2d AN0k0N(Nk)1NkAk=(Nk)Ak
17 16 sumeq2dv AN0k=0N(Nk)1NkAk=k=0N(Nk)Ak
18 3 17 eqtrd AN01+AN=k=0N(Nk)Ak