Metamath Proof Explorer


Theorem bits0ALTV

Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion bits0ALTV N0bitsNNOdd

Proof

Step Hyp Ref Expression
1 0nn0 00
2 bitsval2 N000bitsN¬2N20
3 1 2 mpan2 N0bitsN¬2N20
4 2cn 2
5 exp0 220=1
6 4 5 ax-mp 20=1
7 6 oveq2i N20=N1
8 zcn NN
9 8 div1d NN1=N
10 7 9 eqtrid NN20=N
11 10 fveq2d NN20=N
12 flid NN=N
13 11 12 eqtrd NN20=N
14 13 breq2d N2N202N
15 14 notbid N¬2N20¬2N
16 isodd3 NOddN¬2N
17 16 baibr N¬2NNOdd
18 3 15 17 3bitrd N0bitsNNOdd