Metamath Proof Explorer


Theorem bj-dfmpoa

Description: An equivalent definition of df-mpo . (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-dfmpoa x A , y B C = s t | x A y B s = x y t = C

Proof

Step Hyp Ref Expression
1 df-mpo x A , y B C = x y t | x A y B t = C
2 dfoprab2 x y t | x A y B t = C = s t | x y s = x y x A y B t = C
3 ancom x A y B t = C t = C x A y B
4 3 anbi2i s = x y x A y B t = C s = x y t = C x A y B
5 anass s = x y t = C x A y B s = x y t = C x A y B
6 an13 s = x y t = C x A y B y B x A s = x y t = C
7 4 5 6 3bitr2i s = x y x A y B t = C y B x A s = x y t = C
8 7 exbii y s = x y x A y B t = C y y B x A s = x y t = C
9 df-rex y B x A s = x y t = C y y B x A s = x y t = C
10 r19.42v y B x A s = x y t = C x A y B s = x y t = C
11 8 9 10 3bitr2i y s = x y x A y B t = C x A y B s = x y t = C
12 11 exbii x y s = x y x A y B t = C x x A y B s = x y t = C
13 df-rex x A y B s = x y t = C x x A y B s = x y t = C
14 12 13 bitr4i x y s = x y x A y B t = C x A y B s = x y t = C
15 14 opabbii s t | x y s = x y x A y B t = C = s t | x A y B s = x y t = C
16 1 2 15 3eqtri x A , y B C = s t | x A y B s = x y t = C