Metamath Proof Explorer


Theorem bj-ififc

Description: A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on X : it is implied by either side. (Contributed by BJ, 24-Sep-2019) Generalize statement from setvar x to class X . (Revised by BJ, 26-Dec-2023)

Ref Expression
Assertion bj-ififc XifφABif-φXAXB

Proof

Step Hyp Ref Expression
1 bj-df-ifc ifφAB=x|if-φxAxB
2 1 eleq2i XifφABXx|if-φxAxB
3 df-ifp if-φXAXBφXA¬φXB
4 elex XAXV
5 4 adantl φXAXV
6 elex XBXV
7 6 adantl ¬φXBXV
8 5 7 jaoi φXA¬φXBXV
9 3 8 sylbi if-φXAXBXV
10 eleq1 x=XxAXA
11 eleq1 x=XxBXB
12 10 11 ifpbi23d x=Xif-φxAxBif-φXAXB
13 9 12 elab3 Xx|if-φxAxBif-φXAXB
14 2 13 bitri XifφABif-φXAXB