Metamath Proof Explorer


Theorem bj-inftyexpitaudisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion bj-inftyexpitaudisj ¬ +∞e A

Proof

Step Hyp Ref Expression
1 2fveq3 x = A { R 1 st x = { R 1 st A
2 1 opeq1d x = A { R 1 st x 𝑹 = { R 1 st A 𝑹
3 df-bj-inftyexpitau +∞e = x { R 1 st x 𝑹
4 opex { R 1 st A 𝑹 V
5 2 3 4 fvmpt A +∞e A = { R 1 st A 𝑹
6 opex { R 1 st y 𝑹 V
7 df-bj-inftyexpitau +∞e = y { R 1 st y 𝑹
8 6 7 dmmpti dom +∞e =
9 5 8 eleq2s A dom +∞e +∞e A = { R 1 st A 𝑹
10 nrex1 𝑹 V
11 bj-nsnid 𝑹 V ¬ 𝑹 𝑹
12 10 11 ax-mp ¬ 𝑹 𝑹
13 12 intnan ¬ { R 1 st A 𝑹 𝑹 𝑹
14 opelxp { R 1 st A 𝑹 𝑹 × 𝑹 { R 1 st A 𝑹 𝑹 𝑹
15 13 14 mtbir ¬ { R 1 st A 𝑹 𝑹 × 𝑹
16 df-c = 𝑹 × 𝑹
17 16 eleq2i { R 1 st A 𝑹 { R 1 st A 𝑹 𝑹 × 𝑹
18 15 17 mtbir ¬ { R 1 st A 𝑹
19 eqcom +∞e A = { R 1 st A 𝑹 { R 1 st A 𝑹 = +∞e A
20 19 biimpi +∞e A = { R 1 st A 𝑹 { R 1 st A 𝑹 = +∞e A
21 20 eleq1d +∞e A = { R 1 st A 𝑹 { R 1 st A 𝑹 +∞e A
22 18 21 mtbii +∞e A = { R 1 st A 𝑹 ¬ +∞e A
23 9 22 syl A dom +∞e ¬ +∞e A
24 0ncn ¬
25 ndmfv ¬ A dom +∞e +∞e A =
26 25 eleq1d ¬ A dom +∞e +∞e A
27 24 26 mtbiri ¬ A dom +∞e ¬ +∞e A
28 23 27 pm2.61i ¬ +∞e A