Metamath Proof Explorer


Theorem bj-inftyexpitaudisj

Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion bj-inftyexpitaudisj ¬+∞eA

Proof

Step Hyp Ref Expression
1 2fveq3 x=A{R1stx={R1stA
2 1 opeq1d x=A{R1stx𝑹={R1stA𝑹
3 df-bj-inftyexpitau +∞e=x{R1stx𝑹
4 opex {R1stA𝑹V
5 2 3 4 fvmpt A+∞eA={R1stA𝑹
6 opex {R1sty𝑹V
7 df-bj-inftyexpitau +∞e=y{R1sty𝑹
8 6 7 dmmpti dom+∞e=
9 5 8 eleq2s Adom+∞e+∞eA={R1stA𝑹
10 nrex1 𝑹V
11 bj-nsnid 𝑹V¬𝑹𝑹
12 10 11 ax-mp ¬𝑹𝑹
13 12 intnan ¬{R1stA𝑹𝑹𝑹
14 opelxp {R1stA𝑹𝑹×𝑹{R1stA𝑹𝑹𝑹
15 13 14 mtbir ¬{R1stA𝑹𝑹×𝑹
16 df-c =𝑹×𝑹
17 16 eleq2i {R1stA𝑹{R1stA𝑹𝑹×𝑹
18 15 17 mtbir ¬{R1stA𝑹
19 eqcom +∞eA={R1stA𝑹{R1stA𝑹=+∞eA
20 19 biimpi +∞eA={R1stA𝑹{R1stA𝑹=+∞eA
21 20 eleq1d +∞eA={R1stA𝑹{R1stA𝑹+∞eA
22 18 21 mtbii +∞eA={R1stA𝑹¬+∞eA
23 9 22 syl Adom+∞e¬+∞eA
24 0ncn ¬
25 ndmfv ¬Adom+∞e+∞eA=
26 25 eleq1d ¬Adom+∞e+∞eA
27 24 26 mtbiri ¬Adom+∞e¬+∞eA
28 23 27 pm2.61i ¬+∞eA