Step |
Hyp |
Ref |
Expression |
1 |
|
2fveq3 |
|- ( x = A -> ( {R ` ( 1st ` x ) ) = ( {R ` ( 1st ` A ) ) ) |
2 |
1
|
opeq1d |
|- ( x = A -> <. ( {R ` ( 1st ` x ) ) , { R. } >. = <. ( {R ` ( 1st ` A ) ) , { R. } >. ) |
3 |
|
df-bj-inftyexpitau |
|- inftyexpitau = ( x e. RR |-> <. ( {R ` ( 1st ` x ) ) , { R. } >. ) |
4 |
|
opex |
|- <. ( {R ` ( 1st ` A ) ) , { R. } >. e. _V |
5 |
2 3 4
|
fvmpt |
|- ( A e. RR -> ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. ) |
6 |
|
opex |
|- <. ( {R ` ( 1st ` y ) ) , { R. } >. e. _V |
7 |
|
df-bj-inftyexpitau |
|- inftyexpitau = ( y e. RR |-> <. ( {R ` ( 1st ` y ) ) , { R. } >. ) |
8 |
6 7
|
dmmpti |
|- dom inftyexpitau = RR |
9 |
5 8
|
eleq2s |
|- ( A e. dom inftyexpitau -> ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. ) |
10 |
|
nrex1 |
|- R. e. _V |
11 |
|
bj-nsnid |
|- ( R. e. _V -> -. { R. } e. R. ) |
12 |
10 11
|
ax-mp |
|- -. { R. } e. R. |
13 |
12
|
intnan |
|- -. ( ( {R ` ( 1st ` A ) ) e. R. /\ { R. } e. R. ) |
14 |
|
opelxp |
|- ( <. ( {R ` ( 1st ` A ) ) , { R. } >. e. ( R. X. R. ) <-> ( ( {R ` ( 1st ` A ) ) e. R. /\ { R. } e. R. ) ) |
15 |
13 14
|
mtbir |
|- -. <. ( {R ` ( 1st ` A ) ) , { R. } >. e. ( R. X. R. ) |
16 |
|
df-c |
|- CC = ( R. X. R. ) |
17 |
16
|
eleq2i |
|- ( <. ( {R ` ( 1st ` A ) ) , { R. } >. e. CC <-> <. ( {R ` ( 1st ` A ) ) , { R. } >. e. ( R. X. R. ) ) |
18 |
15 17
|
mtbir |
|- -. <. ( {R ` ( 1st ` A ) ) , { R. } >. e. CC |
19 |
|
eqcom |
|- ( ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. <-> <. ( {R ` ( 1st ` A ) ) , { R. } >. = ( inftyexpitau ` A ) ) |
20 |
19
|
biimpi |
|- ( ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. -> <. ( {R ` ( 1st ` A ) ) , { R. } >. = ( inftyexpitau ` A ) ) |
21 |
20
|
eleq1d |
|- ( ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. -> ( <. ( {R ` ( 1st ` A ) ) , { R. } >. e. CC <-> ( inftyexpitau ` A ) e. CC ) ) |
22 |
18 21
|
mtbii |
|- ( ( inftyexpitau ` A ) = <. ( {R ` ( 1st ` A ) ) , { R. } >. -> -. ( inftyexpitau ` A ) e. CC ) |
23 |
9 22
|
syl |
|- ( A e. dom inftyexpitau -> -. ( inftyexpitau ` A ) e. CC ) |
24 |
|
0ncn |
|- -. (/) e. CC |
25 |
|
ndmfv |
|- ( -. A e. dom inftyexpitau -> ( inftyexpitau ` A ) = (/) ) |
26 |
25
|
eleq1d |
|- ( -. A e. dom inftyexpitau -> ( ( inftyexpitau ` A ) e. CC <-> (/) e. CC ) ) |
27 |
24 26
|
mtbiri |
|- ( -. A e. dom inftyexpitau -> -. ( inftyexpitau ` A ) e. CC ) |
28 |
23 27
|
pm2.61i |
|- -. ( inftyexpitau ` A ) e. CC |