Metamath Proof Explorer


Theorem bj-inrab

Description: Generalization of inrab . (Contributed by BJ, 21-Apr-2019)

Ref Expression
Assertion bj-inrab xA|φxB|ψ=xAB|φψ

Proof

Step Hyp Ref Expression
1 an4 xAφxBψxAxBφψ
2 elin xABxAxB
3 2 anbi1i xABφψxAxBφψ
4 1 3 bitr4i xAφxBψxABφψ
5 4 abbii x|xAφxBψ=x|xABφψ
6 df-rab xA|φ=x|xAφ
7 df-rab xB|ψ=x|xBψ
8 6 7 ineq12i xA|φxB|ψ=x|xAφx|xBψ
9 inab x|xAφx|xBψ=x|xAφxBψ
10 8 9 eqtri xA|φxB|ψ=x|xAφxBψ
11 df-rab xAB|φψ=x|xABφψ
12 5 10 11 3eqtr4i xA|φxB|ψ=xAB|φψ