Metamath Proof Explorer


Theorem bj-ismoored2

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1 φAMoore_
bj-ismoored.2 φBA
bj-ismoored2.3 φB
Assertion bj-ismoored2 φBA

Proof

Step Hyp Ref Expression
1 bj-ismoored.1 φAMoore_
2 bj-ismoored.2 φBA
3 bj-ismoored2.3 φB
4 intssuni2 BABBA
5 2 3 4 syl2anc φBA
6 sseqin2 BAAB=B
7 5 6 sylib φAB=B
8 1 2 bj-ismoored φABA
9 7 8 eqeltrrd φBA