Metamath Proof Explorer


Theorem bj-ismoored2

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1 φ A Moore _
bj-ismoored.2 φ B A
bj-ismoored2.3 φ B
Assertion bj-ismoored2 φ B A

Proof

Step Hyp Ref Expression
1 bj-ismoored.1 φ A Moore _
2 bj-ismoored.2 φ B A
3 bj-ismoored2.3 φ B
4 intssuni2 B A B B A
5 2 3 4 syl2anc φ B A
6 sseqin2 B A A B = B
7 5 6 sylib φ A B = B
8 1 2 bj-ismoored φ A B A
9 7 8 eqeltrrd φ B A