Metamath Proof Explorer


Theorem bj-ismooredr

Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on A : it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypothesis bj-ismooredr.1 φxAAxA
Assertion bj-ismooredr φAMoore_

Proof

Step Hyp Ref Expression
1 bj-ismooredr.1 φxAAxA
2 elpwi x𝒫AxA
3 1 ex φxAAxA
4 2 3 syl5 φx𝒫AAxA
5 4 ralrimiv φx𝒫AAxA
6 bj-ismoore AMoore_x𝒫AAxA
7 5 6 sylibr φAMoore_