Metamath Proof Explorer


Theorem bj-nnfim

Description: Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023)

Ref Expression
Assertion bj-nnfim Ⅎ'xφℲ'xψℲ'xφψ

Proof

Step Hyp Ref Expression
1 19.35 xφψxφxψ
2 bj-nnfim2 Ⅎ'xφℲ'xψxφxψφψ
3 1 2 biimtrid Ⅎ'xφℲ'xψxφψφψ
4 bj-nnfim1 Ⅎ'xφℲ'xψφψxφxψ
5 19.38 xφxψxφψ
6 4 5 syl6 Ⅎ'xφℲ'xψφψxφψ
7 df-bj-nnf Ⅎ'xφψxφψφψφψxφψ
8 3 6 7 sylanbrc Ⅎ'xφℲ'xψℲ'xφψ