Metamath Proof Explorer


Theorem bj-restsnss

Description: Special case of bj-restsn . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsnss YVAYY𝑡A=A

Proof

Step Hyp Ref Expression
1 sseqin2 AYYA=A
2 sneq YA=AYA=A
3 1 2 sylbi AYYA=A
4 ssexg AYYVAV
5 4 ancoms YVAYAV
6 bj-restsn YVAVY𝑡A=YA
7 5 6 syldan YVAYY𝑡A=YA
8 eqeq2 YA=AY𝑡A=YAY𝑡A=A
9 8 biimpa YA=AY𝑡A=YAY𝑡A=A
10 3 7 9 syl2an2 YVAYY𝑡A=A