Metamath Proof Explorer


Theorem bj-restsnss2

Description: Special case of bj-restsn . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsnss2 AVYAY𝑡A=Y

Proof

Step Hyp Ref Expression
1 df-ss YAYA=Y
2 sneq YA=YYA=Y
3 1 2 sylbi YAYA=Y
4 ssexg YAAVYV
5 4 ancoms AVYAYV
6 bj-restsn YVAVY𝑡A=YA
7 6 ancoms AVYVY𝑡A=YA
8 5 7 syldan AVYAY𝑡A=YA
9 eqeq2 YA=YY𝑡A=YAY𝑡A=Y
10 9 biimpa YA=YY𝑡A=YAY𝑡A=Y
11 3 8 10 syl2an2 AVYAY𝑡A=Y