Metamath Proof Explorer


Theorem bj-snglc

Description: Characterization of the elements of A in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglc A B A sngl B

Proof

Step Hyp Ref Expression
1 df-rex x B A = x x x B A = x
2 bj-elsngl A sngl B x B A = x
3 elisset A B x x = A
4 3 pm4.71i A B A B x x = A
5 19.42v x A B x = A A B x x = A
6 eleq1 A = x A B x B
7 6 eqcoms x = A A B x B
8 7 pm5.32ri A B x = A x B x = A
9 8 exbii x A B x = A x x B x = A
10 4 5 9 3bitr2i A B x x B x = A
11 sneqbg x V x = A x = A
12 11 elv x = A x = A
13 eqcom x = A A = x
14 12 13 bitr3i x = A A = x
15 14 anbi2i x B x = A x B A = x
16 15 exbii x x B x = A x x B A = x
17 10 16 bitri A B x x B A = x
18 1 2 17 3bitr4ri A B A sngl B