Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-tagex | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-snglex | ||
| 2 | p0ex | ||
| 3 | 2 | biantru | |
| 4 | 1 3 | bitri | |
| 5 | unexb | ||
| 6 | df-bj-tag | ||
| 7 | 6 | eqcomi | |
| 8 | 7 | eleq1i | |
| 9 | 4 5 8 | 3bitri |