Metamath Proof Explorer


Theorem blen2

Description: The binary length of 2. (Contributed by AV, 21-May-2020)

Ref Expression
Assertion blen2 #b 2 = 2

Proof

Step Hyp Ref Expression
1 2nn 2
2 blennn 2#b 2 = log22+1
3 2cn 2
4 2ne0 20
5 1ne2 12
6 5 necomi 21
7 logbid1 22021log22=1
8 3 4 6 7 mp3an log22=1
9 8 fveq2i log22=1
10 1z 1
11 flid 11=1
12 10 11 ax-mp 1=1
13 9 12 eqtri log22=1
14 13 a1i 2log22=1
15 14 oveq1d 2log22+1=1+1
16 1p1e2 1+1=2
17 16 a1i 21+1=2
18 2 15 17 3eqtrd 2#b 2 = 2
19 1 18 ax-mp #b 2 = 2