Metamath Proof Explorer


Theorem blo3i

Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses isblo3i.1 X=BaseSetU
isblo3i.m M=normCVU
isblo3i.n N=normCVW
isblo3i.4 L=ULnOpW
isblo3i.5 B=UBLnOpW
isblo3i.u UNrmCVec
isblo3i.w WNrmCVec
Assertion blo3i TLAyXNTyAMyTB

Proof

Step Hyp Ref Expression
1 isblo3i.1 X=BaseSetU
2 isblo3i.m M=normCVU
3 isblo3i.n N=normCVW
4 isblo3i.4 L=ULnOpW
5 isblo3i.5 B=UBLnOpW
6 isblo3i.u UNrmCVec
7 isblo3i.w WNrmCVec
8 oveq1 x=AxMy=AMy
9 8 breq2d x=ANTyxMyNTyAMy
10 9 ralbidv x=AyXNTyxMyyXNTyAMy
11 10 rspcev AyXNTyAMyxyXNTyxMy
12 1 2 3 4 5 6 7 isblo3i TBTLxyXNTyxMy
13 12 biimpri TLxyXNTyxMyTB
14 11 13 sylan2 TLAyXNTyAMyTB
15 14 3impb TLAyXNTyAMyTB