Metamath Proof Explorer


Theorem isblo3i

Description: The predicate "is a bounded linear operator." Definition 2.7-1 of Kreyszig p. 91. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses isblo3i.1 X=BaseSetU
isblo3i.m M=normCVU
isblo3i.n N=normCVW
isblo3i.4 L=ULnOpW
isblo3i.5 B=UBLnOpW
isblo3i.u UNrmCVec
isblo3i.w WNrmCVec
Assertion isblo3i TBTLxyXNTyxMy

Proof

Step Hyp Ref Expression
1 isblo3i.1 X=BaseSetU
2 isblo3i.m M=normCVU
3 isblo3i.n N=normCVW
4 isblo3i.4 L=ULnOpW
5 isblo3i.5 B=UBLnOpW
6 isblo3i.u UNrmCVec
7 isblo3i.w WNrmCVec
8 4 5 bloln UNrmCVecWNrmCVecTBTL
9 6 7 8 mp3an12 TBTL
10 eqid BaseSetW=BaseSetW
11 eqid UnormOpOLDW=UnormOpOLDW
12 1 10 11 5 nmblore UNrmCVecWNrmCVecTBUnormOpOLDWT
13 6 7 12 mp3an12 TBUnormOpOLDWT
14 1 2 3 11 5 6 7 nmblolbi TByXNTyUnormOpOLDWTMy
15 14 ralrimiva TByXNTyUnormOpOLDWTMy
16 oveq1 x=UnormOpOLDWTxMy=UnormOpOLDWTMy
17 16 breq2d x=UnormOpOLDWTNTyxMyNTyUnormOpOLDWTMy
18 17 ralbidv x=UnormOpOLDWTyXNTyxMyyXNTyUnormOpOLDWTMy
19 18 rspcev UnormOpOLDWTyXNTyUnormOpOLDWTMyxyXNTyxMy
20 13 15 19 syl2anc TBxyXNTyxMy
21 9 20 jca TBTLxyXNTyxMy
22 simp1 TLxyXNTyxMyTL
23 1 10 4 lnof UNrmCVecWNrmCVecTLT:XBaseSetW
24 6 7 23 mp3an12 TLT:XBaseSetW
25 1 10 11 nmoxr UNrmCVecWNrmCVecT:XBaseSetWUnormOpOLDWT*
26 6 7 25 mp3an12 T:XBaseSetWUnormOpOLDWT*
27 26 3ad2ant1 T:XBaseSetWxyXNTyxMyUnormOpOLDWT*
28 recn xx
29 28 abscld xx
30 29 rexrd xx*
31 30 3ad2ant2 T:XBaseSetWxyXNTyxMyx*
32 pnfxr +∞*
33 32 a1i T:XBaseSetWxyXNTyxMy+∞*
34 1 10 2 3 11 6 7 nmoub3i T:XBaseSetWxyXNTyxMyUnormOpOLDWTx
35 ltpnf xx<+∞
36 29 35 syl xx<+∞
37 36 3ad2ant2 T:XBaseSetWxyXNTyxMyx<+∞
38 27 31 33 34 37 xrlelttrd T:XBaseSetWxyXNTyxMyUnormOpOLDWT<+∞
39 24 38 syl3an1 TLxyXNTyxMyUnormOpOLDWT<+∞
40 11 4 5 isblo UNrmCVecWNrmCVecTBTLUnormOpOLDWT<+∞
41 6 7 40 mp2an TBTLUnormOpOLDWT<+∞
42 22 39 41 sylanbrc TLxyXNTyxMyTB
43 42 rexlimdv3a TLxyXNTyxMyTB
44 43 imp TLxyXNTyxMyTB
45 21 44 impbii TBTLxyXNTyxMy