Metamath Proof Explorer


Theorem nmblolbi

Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblolbi.1 X = BaseSet U
nmblolbi.4 L = norm CV U
nmblolbi.5 M = norm CV W
nmblolbi.6 N = U normOp OLD W
nmblolbi.7 B = U BLnOp W
nmblolbi.u U NrmCVec
nmblolbi.w W NrmCVec
Assertion nmblolbi T B A X M T A N T L A

Proof

Step Hyp Ref Expression
1 nmblolbi.1 X = BaseSet U
2 nmblolbi.4 L = norm CV U
3 nmblolbi.5 M = norm CV W
4 nmblolbi.6 N = U normOp OLD W
5 nmblolbi.7 B = U BLnOp W
6 nmblolbi.u U NrmCVec
7 nmblolbi.w W NrmCVec
8 fveq1 T = if T B T U 0 op W T A = if T B T U 0 op W A
9 8 fveq2d T = if T B T U 0 op W M T A = M if T B T U 0 op W A
10 fveq2 T = if T B T U 0 op W N T = N if T B T U 0 op W
11 10 oveq1d T = if T B T U 0 op W N T L A = N if T B T U 0 op W L A
12 9 11 breq12d T = if T B T U 0 op W M T A N T L A M if T B T U 0 op W A N if T B T U 0 op W L A
13 12 imbi2d T = if T B T U 0 op W A X M T A N T L A A X M if T B T U 0 op W A N if T B T U 0 op W L A
14 eqid U 0 op W = U 0 op W
15 14 5 0blo U NrmCVec W NrmCVec U 0 op W B
16 6 7 15 mp2an U 0 op W B
17 16 elimel if T B T U 0 op W B
18 1 2 3 4 5 6 7 17 nmblolbii A X M if T B T U 0 op W A N if T B T U 0 op W L A
19 13 18 dedth T B A X M T A N T L A
20 19 imp T B A X M T A N T L A