Metamath Proof Explorer


Theorem nmblolbi

Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmblolbi.1 X=BaseSetU
nmblolbi.4 L=normCVU
nmblolbi.5 M=normCVW
nmblolbi.6 N=UnormOpOLDW
nmblolbi.7 B=UBLnOpW
nmblolbi.u UNrmCVec
nmblolbi.w WNrmCVec
Assertion nmblolbi TBAXMTANTLA

Proof

Step Hyp Ref Expression
1 nmblolbi.1 X=BaseSetU
2 nmblolbi.4 L=normCVU
3 nmblolbi.5 M=normCVW
4 nmblolbi.6 N=UnormOpOLDW
5 nmblolbi.7 B=UBLnOpW
6 nmblolbi.u UNrmCVec
7 nmblolbi.w WNrmCVec
8 fveq1 T=ifTBTU0opWTA=ifTBTU0opWA
9 8 fveq2d T=ifTBTU0opWMTA=MifTBTU0opWA
10 fveq2 T=ifTBTU0opWNT=NifTBTU0opW
11 10 oveq1d T=ifTBTU0opWNTLA=NifTBTU0opWLA
12 9 11 breq12d T=ifTBTU0opWMTANTLAMifTBTU0opWANifTBTU0opWLA
13 12 imbi2d T=ifTBTU0opWAXMTANTLAAXMifTBTU0opWANifTBTU0opWLA
14 eqid U0opW=U0opW
15 14 5 0blo UNrmCVecWNrmCVecU0opWB
16 6 7 15 mp2an U0opWB
17 16 elimel ifTBTU0opWB
18 1 2 3 4 5 6 7 17 nmblolbii AXMifTBTU0opWANifTBTU0opWLA
19 13 18 dedth TBAXMTANTLA
20 19 imp TBAXMTANTLA