Metamath Proof Explorer


Theorem blockadjliftmap

Description: A "two-stage" construction is obtained by first forming the block relation ( R |X.`'E ) and then adjoining elements as "BlockAdj". Combined, it uses the relation ( ( R |X. ``' E ) u. ``' _E ) ` . (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion blockadjliftmap Could not format assertion : No typesetting found for |- ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } with typecode |-

Proof

Step Hyp Ref Expression
1 df-adjliftmap Could not format ( ( R |X. `' _E ) AdjLiftMap A ) = ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) : No typesetting found for |- ( ( R |X. `' _E ) AdjLiftMap A ) = ( m e. dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) |-> [ m ] ( ( ( R |X. `' _E ) u. `' _E ) |` A ) ) with typecode |-
2 df-mpt m dom R E -1 E -1 A m R E -1 E -1 A = m n | m dom R E -1 E -1 A n = m R E -1 E -1 A
3 dmxrnuncnvepres dom R E -1 E -1 A = A
4 3 eleq2i m dom R E -1 E -1 A m A
5 4 anbi1i m dom R E -1 E -1 A n = m R E -1 E -1 A m A n = m R E -1 E -1 A
6 eldifi m A m A
7 ecuncnvepres m A m R E -1 E -1 A = m m R E -1
8 6 7 syl m A m R E -1 E -1 A = m m R E -1
9 ecxrncnvep2 m V m R E -1 = m R × m
10 9 elv m R E -1 = m R × m
11 10 uneq2i m m R E -1 = m m R × m
12 8 11 eqtrdi m A m R E -1 E -1 A = m m R × m
13 12 eqeq2d m A n = m R E -1 E -1 A n = m m R × m
14 13 pm5.32i m A n = m R E -1 E -1 A m A n = m m R × m
15 5 14 bitri m dom R E -1 E -1 A n = m R E -1 E -1 A m A n = m m R × m
16 15 opabbii m n | m dom R E -1 E -1 A n = m R E -1 E -1 A = m n | m A n = m m R × m
17 1 2 16 3eqtri Could not format ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } : No typesetting found for |- ( ( R |X. `' _E ) AdjLiftMap A ) = { <. m , n >. | ( m e. ( A \ { (/) } ) /\ n = ( m u. ( [ m ] R X. m ) ) ) } with typecode |-