Metamath Proof Explorer


Theorem bloln

Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloln.4 L=ULnOpW
bloln.5 B=UBLnOpW
Assertion bloln UNrmCVecWNrmCVecTBTL

Proof

Step Hyp Ref Expression
1 bloln.4 L=ULnOpW
2 bloln.5 B=UBLnOpW
3 eqid UnormOpOLDW=UnormOpOLDW
4 3 1 2 isblo UNrmCVecWNrmCVecTBTLUnormOpOLDWT<+∞
5 4 simprbda UNrmCVecWNrmCVecTBTL
6 5 3impa UNrmCVecWNrmCVecTBTL