Metamath Proof Explorer


Theorem blopn

Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J=MetOpenD
Assertion blopn D∞MetXPXR*PballDRJ

Proof

Step Hyp Ref Expression
1 mopni.1 J=MetOpenD
2 1 blssopn D∞MetXranballDJ
3 2 3ad2ant1 D∞MetXPXR*ranballDJ
4 blelrn D∞MetXPXR*PballDRranballD
5 3 4 sseldd D∞MetXPXR*PballDRJ