Metamath Proof Explorer


Theorem blss2

Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blss2 D∞MetXPXQXRSPDQSRPballDRQballDS

Proof

Step Hyp Ref Expression
1 simpl1 D∞MetXPXQXRSPDQSRD∞MetX
2 simpl2 D∞MetXPXQXRSPDQSRPX
3 simpl3 D∞MetXPXQXRSPDQSRQX
4 simpr1 D∞MetXPXQXRSPDQSRR
5 4 rexrd D∞MetXPXQXRSPDQSRR*
6 simpr2 D∞MetXPXQXRSPDQSRS
7 6 rexrd D∞MetXPXQXRSPDQSRS*
8 6 4 resubcld D∞MetXPXQXRSPDQSRSR
9 simpr3 D∞MetXPXQXRSPDQSRPDQSR
10 xmetlecl D∞MetXPXQXSRPDQSRPDQ
11 1 2 3 8 9 10 syl122anc D∞MetXPXQXRSPDQSRPDQ
12 rexsub SRS+𝑒R=SR
13 6 4 12 syl2anc D∞MetXPXQXRSPDQSRS+𝑒R=SR
14 9 13 breqtrrd D∞MetXPXQXRSPDQSRPDQS+𝑒R
15 1 2 3 5 7 11 14 xblss2 D∞MetXPXQXRSPDQSRPballDRQballDS