Metamath Proof Explorer


Theorem blss2ps

Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014) (Revised by Mario Carneiro, 23-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blss2ps DPsMetXPXQXRSPDQSRPballDRQballDS

Proof

Step Hyp Ref Expression
1 simpl1 DPsMetXPXQXRSPDQSRDPsMetX
2 simpl2 DPsMetXPXQXRSPDQSRPX
3 simpl3 DPsMetXPXQXRSPDQSRQX
4 simpr1 DPsMetXPXQXRSPDQSRR
5 4 rexrd DPsMetXPXQXRSPDQSRR*
6 simpr2 DPsMetXPXQXRSPDQSRS
7 6 rexrd DPsMetXPXQXRSPDQSRS*
8 6 4 resubcld DPsMetXPXQXRSPDQSRSR
9 simpr3 DPsMetXPXQXRSPDQSRPDQSR
10 psmetlecl DPsMetXPXQXSRPDQSRPDQ
11 1 2 3 8 9 10 syl122anc DPsMetXPXQXRSPDQSRPDQ
12 rexsub SRS+𝑒R=SR
13 6 4 12 syl2anc DPsMetXPXQXRSPDQSRS+𝑒R=SR
14 9 13 breqtrrd DPsMetXPXQXRSPDQSRPDQS+𝑒R
15 1 2 3 5 7 11 14 xblss2ps DPsMetXPXQXRSPDQSRPballDRQballDS