Metamath Proof Explorer


Theorem blval

Description: The ball around a point P is the set of all points whose distance from P is less than the ball's radius R . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion blval D∞MetXPXR*PballDR=xX|PDx<R

Proof

Step Hyp Ref Expression
1 blfval D∞MetXballD=yX,r*xX|yDx<r
2 1 3ad2ant1 D∞MetXPXR*ballD=yX,r*xX|yDx<r
3 simprl D∞MetXPXR*y=Pr=Ry=P
4 3 oveq1d D∞MetXPXR*y=Pr=RyDx=PDx
5 simprr D∞MetXPXR*y=Pr=Rr=R
6 4 5 breq12d D∞MetXPXR*y=Pr=RyDx<rPDx<R
7 6 rabbidv D∞MetXPXR*y=Pr=RxX|yDx<r=xX|PDx<R
8 simp2 D∞MetXPXR*PX
9 simp3 D∞MetXPXR*R*
10 elfvdm D∞MetXXdom∞Met
11 10 3ad2ant1 D∞MetXPXR*Xdom∞Met
12 rabexg Xdom∞MetxX|PDx<RV
13 11 12 syl D∞MetXPXR*xX|PDx<RV
14 2 7 8 9 13 ovmpod D∞MetXPXR*PballDR=xX|PDx<R