Metamath Proof Explorer


Theorem elblps

Description: Membership in a ball. (Contributed by NM, 2-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion elblps DPsMetXPXR*APballDRAXPDA<R

Proof

Step Hyp Ref Expression
1 blvalps DPsMetXPXR*PballDR=xX|PDx<R
2 1 eleq2d DPsMetXPXR*APballDRAxX|PDx<R
3 oveq2 x=APDx=PDA
4 3 breq1d x=APDx<RPDA<R
5 4 elrab AxX|PDx<RAXPDA<R
6 2 5 bitrdi DPsMetXPXR*APballDRAXPDA<R