Metamath Proof Explorer


Theorem bnd2lem

Description: Lemma for equivbnd2 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015)

Ref Expression
Hypothesis bnd2lem.1 D=MY×Y
Assertion bnd2lem MMetXDBndYYX

Proof

Step Hyp Ref Expression
1 bnd2lem.1 D=MY×Y
2 resss MY×YM
3 1 2 eqsstri DM
4 dmss DMdomDdomM
5 3 4 mp1i MMetXDBndYdomDdomM
6 bndmet DBndYDMetY
7 metf DMetYD:Y×Y
8 fdm D:Y×YdomD=Y×Y
9 6 7 8 3syl DBndYdomD=Y×Y
10 9 adantl MMetXDBndYdomD=Y×Y
11 metf MMetXM:X×X
12 11 fdmd MMetXdomM=X×X
13 12 adantr MMetXDBndYdomM=X×X
14 5 10 13 3sstr3d MMetXDBndYY×YX×X
15 dmss Y×YX×XdomY×YdomX×X
16 14 15 syl MMetXDBndYdomY×YdomX×X
17 dmxpid domY×Y=Y
18 dmxpid domX×X=X
19 16 17 18 3sstr3g MMetXDBndYYX