| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnd2lem.1 |
⊢ 𝐷 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) |
| 2 |
|
resss |
⊢ ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) ⊆ 𝑀 |
| 3 |
1 2
|
eqsstri |
⊢ 𝐷 ⊆ 𝑀 |
| 4 |
|
dmss |
⊢ ( 𝐷 ⊆ 𝑀 → dom 𝐷 ⊆ dom 𝑀 ) |
| 5 |
3 4
|
mp1i |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → dom 𝐷 ⊆ dom 𝑀 ) |
| 6 |
|
bndmet |
⊢ ( 𝐷 ∈ ( Bnd ‘ 𝑌 ) → 𝐷 ∈ ( Met ‘ 𝑌 ) ) |
| 7 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑌 ) → 𝐷 : ( 𝑌 × 𝑌 ) ⟶ ℝ ) |
| 8 |
|
fdm |
⊢ ( 𝐷 : ( 𝑌 × 𝑌 ) ⟶ ℝ → dom 𝐷 = ( 𝑌 × 𝑌 ) ) |
| 9 |
6 7 8
|
3syl |
⊢ ( 𝐷 ∈ ( Bnd ‘ 𝑌 ) → dom 𝐷 = ( 𝑌 × 𝑌 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → dom 𝐷 = ( 𝑌 × 𝑌 ) ) |
| 11 |
|
metf |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 12 |
11
|
fdmd |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → dom 𝑀 = ( 𝑋 × 𝑋 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → dom 𝑀 = ( 𝑋 × 𝑋 ) ) |
| 14 |
5 10 13
|
3sstr3d |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 15 |
|
dmss |
⊢ ( ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑌 × 𝑌 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → dom ( 𝑌 × 𝑌 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 17 |
|
dmxpid |
⊢ dom ( 𝑌 × 𝑌 ) = 𝑌 |
| 18 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
| 19 |
16 17 18
|
3sstr3g |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( Bnd ‘ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |