Metamath Proof Explorer


Theorem bnj1097

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1097.1 φf=predXAR
bnj1097.3 χnDfFnnφψ
bnj1097.5 τBVTrFoBARpredXARB
Assertion bnj1097 Could not format assertion : No typesetting found for |- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1097.1 φf=predXAR
2 bnj1097.3 χnDfFnnφψ
3 bnj1097.5 τBVTrFoBARpredXARB
4 1 biimpi φf=predXAR
5 2 4 bnj771 χf=predXAR
6 5 3ad2ant3 θτχf=predXAR
7 6 adantr Could not format ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` (/) ) = _pred ( X , A , R ) ) : No typesetting found for |- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` (/) ) = _pred ( X , A , R ) ) with typecode |-
8 3 simp3bi τpredXARB
9 8 3ad2ant2 θτχpredXARB
10 9 adantr Could not format ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> _pred ( X , A , R ) C_ B ) : No typesetting found for |- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> _pred ( X , A , R ) C_ B ) with typecode |-
11 7 10 jca Could not format ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) : No typesetting found for |- ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) with typecode |-
12 11 anim2i Could not format ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) ) : No typesetting found for |- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) ) with typecode |-
13 3anass i=f=predXARpredXARBi=f=predXARpredXARB
14 12 13 sylibr Could not format ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) : No typesetting found for |- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( i = (/) /\ ( f ` (/) ) = _pred ( X , A , R ) /\ _pred ( X , A , R ) C_ B ) ) with typecode |-
15 fveqeq2 i=fi=predXARf=predXAR
16 15 biimpar i=f=predXARfi=predXAR
17 16 adantr i=f=predXARpredXARBfi=predXAR
18 simpr i=f=predXARpredXARBpredXARB
19 17 18 eqsstrd i=f=predXARpredXARBfiB
20 19 3impa i=f=predXARpredXARBfiB
21 14 20 syl Could not format ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B ) : No typesetting found for |- ( ( i = (/) /\ ( ( th /\ ta /\ ch ) /\ ph0 ) ) -> ( f ` i ) C_ B ) with typecode |-