Metamath Proof Explorer


Theorem bnj1385

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1385.1 φfAFunf
bnj1385.2 D=domfdomg
bnj1385.3 ψφfAgAfD=gD
bnj1385.4 xAfxA
bnj1385.5 No typesetting found for |- ( ph' <-> A. h e. A Fun h ) with typecode |-
bnj1385.6 E=domhdomg
bnj1385.7 No typesetting found for |- ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
Assertion bnj1385 ψFunA

Proof

Step Hyp Ref Expression
1 bnj1385.1 φfAFunf
2 bnj1385.2 D=domfdomg
3 bnj1385.3 ψφfAgAfD=gD
4 bnj1385.4 xAfxA
5 bnj1385.5 Could not format ( ph' <-> A. h e. A Fun h ) : No typesetting found for |- ( ph' <-> A. h e. A Fun h ) with typecode |-
6 bnj1385.6 E=domhdomg
7 bnj1385.7 Could not format ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) : No typesetting found for |- ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
8 nfv hfAFunf
9 4 nfcii _fA
10 9 nfcri fhA
11 nfv fFunh
12 10 11 nfim fhAFunh
13 eleq1w f=hfAhA
14 funeq f=hFunfFunh
15 13 14 imbi12d f=hfAFunfhAFunh
16 8 12 15 cbvalv1 ffAFunfhhAFunh
17 df-ral fAFunfffAFunf
18 df-ral hAFunhhhAFunh
19 16 17 18 3bitr4i fAFunfhAFunh
20 19 1 5 3bitr4i Could not format ( ph <-> ph' ) : No typesetting found for |- ( ph <-> ph' ) with typecode |-
21 nfv hfAgAfD=gD
22 nfv fhE=gE
23 9 22 nfralw fgAhE=gE
24 10 23 nfim fhAgAhE=gE
25 dmeq f=hdomf=domh
26 25 ineq1d f=hdomfdomg=domhdomg
27 26 2 6 3eqtr4g f=hD=E
28 27 reseq2d f=hfD=fE
29 reseq1 f=hfE=hE
30 28 29 eqtrd f=hfD=hE
31 27 reseq2d f=hgD=gE
32 30 31 eqeq12d f=hfD=gDhE=gE
33 32 ralbidv f=hgAfD=gDgAhE=gE
34 13 33 imbi12d f=hfAgAfD=gDhAgAhE=gE
35 21 24 34 cbvalv1 ffAgAfD=gDhhAgAhE=gE
36 df-ral fAgAfD=gDffAgAfD=gD
37 df-ral hAgAhE=gEhhAgAhE=gE
38 35 36 37 3bitr4i fAgAfD=gDhAgAhE=gE
39 20 38 anbi12i Could not format ( ( ph /\ A. f e. A A. g e. A ( f |` D ) = ( g |` D ) ) <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) : No typesetting found for |- ( ( ph /\ A. f e. A A. g e. A ( f |` D ) = ( g |` D ) ) <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
40 39 3 7 3bitr4i Could not format ( ps <-> ps' ) : No typesetting found for |- ( ps <-> ps' ) with typecode |-
41 5 6 7 bnj1383 Could not format ( ps' -> Fun U. A ) : No typesetting found for |- ( ps' -> Fun U. A ) with typecode |-
42 40 41 sylbi ψFunA