Metamath Proof Explorer


Theorem bnj1385

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1385.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
bnj1385.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
bnj1385.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
bnj1385.4 ( 𝑥𝐴 → ∀ 𝑓 𝑥𝐴 )
bnj1385.5 ( 𝜑′ ↔ ∀ 𝐴 Fun )
bnj1385.6 𝐸 = ( dom ∩ dom 𝑔 )
bnj1385.7 ( 𝜓′ ↔ ( 𝜑′ ∧ ∀ 𝐴𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
Assertion bnj1385 ( 𝜓 → Fun 𝐴 )

Proof

Step Hyp Ref Expression
1 bnj1385.1 ( 𝜑 ↔ ∀ 𝑓𝐴 Fun 𝑓 )
2 bnj1385.2 𝐷 = ( dom 𝑓 ∩ dom 𝑔 )
3 bnj1385.3 ( 𝜓 ↔ ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
4 bnj1385.4 ( 𝑥𝐴 → ∀ 𝑓 𝑥𝐴 )
5 bnj1385.5 ( 𝜑′ ↔ ∀ 𝐴 Fun )
6 bnj1385.6 𝐸 = ( dom ∩ dom 𝑔 )
7 bnj1385.7 ( 𝜓′ ↔ ( 𝜑′ ∧ ∀ 𝐴𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
8 nfv ( 𝑓𝐴 → Fun 𝑓 )
9 4 nfcii 𝑓 𝐴
10 9 nfcri 𝑓 𝐴
11 nfv 𝑓 Fun
12 10 11 nfim 𝑓 ( 𝐴 → Fun )
13 eleq1w ( 𝑓 = → ( 𝑓𝐴𝐴 ) )
14 funeq ( 𝑓 = → ( Fun 𝑓 ↔ Fun ) )
15 13 14 imbi12d ( 𝑓 = → ( ( 𝑓𝐴 → Fun 𝑓 ) ↔ ( 𝐴 → Fun ) ) )
16 8 12 15 cbvalv1 ( ∀ 𝑓 ( 𝑓𝐴 → Fun 𝑓 ) ↔ ∀ ( 𝐴 → Fun ) )
17 df-ral ( ∀ 𝑓𝐴 Fun 𝑓 ↔ ∀ 𝑓 ( 𝑓𝐴 → Fun 𝑓 ) )
18 df-ral ( ∀ 𝐴 Fun ↔ ∀ ( 𝐴 → Fun ) )
19 16 17 18 3bitr4i ( ∀ 𝑓𝐴 Fun 𝑓 ↔ ∀ 𝐴 Fun )
20 19 1 5 3bitr4i ( 𝜑𝜑′ )
21 nfv ( 𝑓𝐴 → ∀ 𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) )
22 nfv 𝑓 ( 𝐸 ) = ( 𝑔𝐸 )
23 9 22 nfralw 𝑓𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 )
24 10 23 nfim 𝑓 ( 𝐴 → ∀ 𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) )
25 dmeq ( 𝑓 = → dom 𝑓 = dom )
26 25 ineq1d ( 𝑓 = → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom ∩ dom 𝑔 ) )
27 26 2 6 3eqtr4g ( 𝑓 = 𝐷 = 𝐸 )
28 27 reseq2d ( 𝑓 = → ( 𝑓𝐷 ) = ( 𝑓𝐸 ) )
29 reseq1 ( 𝑓 = → ( 𝑓𝐸 ) = ( 𝐸 ) )
30 28 29 eqtrd ( 𝑓 = → ( 𝑓𝐷 ) = ( 𝐸 ) )
31 27 reseq2d ( 𝑓 = → ( 𝑔𝐷 ) = ( 𝑔𝐸 ) )
32 30 31 eqeq12d ( 𝑓 = → ( ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ↔ ( 𝐸 ) = ( 𝑔𝐸 ) ) )
33 32 ralbidv ( 𝑓 = → ( ∀ 𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ↔ ∀ 𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
34 13 33 imbi12d ( 𝑓 = → ( ( 𝑓𝐴 → ∀ 𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) ↔ ( 𝐴 → ∀ 𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) ) )
35 21 24 34 cbvalv1 ( ∀ 𝑓 ( 𝑓𝐴 → ∀ 𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) ↔ ∀ ( 𝐴 → ∀ 𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
36 df-ral ( ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ↔ ∀ 𝑓 ( 𝑓𝐴 → ∀ 𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) )
37 df-ral ( ∀ 𝐴𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ↔ ∀ ( 𝐴 → ∀ 𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
38 35 36 37 3bitr4i ( ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ↔ ∀ 𝐴𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) )
39 20 38 anbi12i ( ( 𝜑 ∧ ∀ 𝑓𝐴𝑔𝐴 ( 𝑓𝐷 ) = ( 𝑔𝐷 ) ) ↔ ( 𝜑′ ∧ ∀ 𝐴𝑔𝐴 ( 𝐸 ) = ( 𝑔𝐸 ) ) )
40 39 3 7 3bitr4i ( 𝜓𝜓′ )
41 5 6 7 bnj1383 ( 𝜓′ → Fun 𝐴 )
42 40 41 sylbi ( 𝜓 → Fun 𝐴 )