Metamath Proof Explorer


Theorem bnj1415

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1415.1 B=d|dAxdpredxARd
bnj1415.2 Y=xfpredxAR
bnj1415.3 C=f|dBfFndxdfx=GY
bnj1415.4 τfCdomf=xtrClxAR
bnj1415.5 D=xA|¬fτ
bnj1415.6 ψRFrSeAD
bnj1415.7 χψxDyD¬yRx
bnj1415.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1415.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1415.10 P=H
Assertion bnj1415 χdomP=trClxAR

Proof

Step Hyp Ref Expression
1 bnj1415.1 B=d|dAxdpredxARd
2 bnj1415.2 Y=xfpredxAR
3 bnj1415.3 C=f|dBfFndxdfx=GY
4 bnj1415.4 τfCdomf=xtrClxAR
5 bnj1415.5 D=xA|¬fτ
6 bnj1415.6 ψRFrSeAD
7 bnj1415.7 χψxDyD¬yRx
8 bnj1415.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1415.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1415.10 P=H
11 6 simplbi ψRFrSeA
12 7 11 bnj835 χRFrSeA
13 5 7 bnj1212 χxA
14 eqid predxARypredxARtrClyAR=predxARypredxARtrClyAR
15 14 bnj1414 RFrSeAxAtrClxAR=predxARypredxARtrClyAR
16 12 13 15 syl2anc χtrClxAR=predxARypredxARtrClyAR
17 iunun ypredxARytrClyAR=ypredxARyypredxARtrClyAR
18 iunid ypredxARy=predxAR
19 18 uneq1i ypredxARyypredxARtrClyAR=predxARypredxARtrClyAR
20 17 19 eqtri ypredxARytrClyAR=predxARypredxARtrClyAR
21 biid χzypredxARytrClyARχzypredxARytrClyAR
22 biid χzypredxARytrClyARypredxARzytrClyARχzypredxARytrClyARypredxARzytrClyAR
23 1 2 3 4 5 6 7 8 9 10 21 22 bnj1398 χypredxARytrClyAR=domP
24 20 23 eqtr3id χpredxARypredxARtrClyAR=domP
25 16 24 eqtr2d χdomP=trClxAR