Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1415.1 | |
|
bnj1415.2 | |
||
bnj1415.3 | |
||
bnj1415.4 | |
||
bnj1415.5 | |
||
bnj1415.6 | |
||
bnj1415.7 | |
||
bnj1415.8 | No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | ||
bnj1415.9 | No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | ||
bnj1415.10 | |
||
Assertion | bnj1415 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1415.1 | |
|
2 | bnj1415.2 | |
|
3 | bnj1415.3 | |
|
4 | bnj1415.4 | |
|
5 | bnj1415.5 | |
|
6 | bnj1415.6 | |
|
7 | bnj1415.7 | |
|
8 | bnj1415.8 | Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |- | |
9 | bnj1415.9 | Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |- | |
10 | bnj1415.10 | |
|
11 | 6 | simplbi | |
12 | 7 11 | bnj835 | |
13 | 5 7 | bnj1212 | |
14 | eqid | |
|
15 | 14 | bnj1414 | |
16 | 12 13 15 | syl2anc | |
17 | iunun | |
|
18 | iunid | |
|
19 | 18 | uneq1i | |
20 | 17 19 | eqtri | |
21 | biid | |
|
22 | biid | |
|
23 | 1 2 3 4 5 6 7 8 9 10 21 22 | bnj1398 | |
24 | 20 23 | eqtr3id | |
25 | 16 24 | eqtr2d | |