Metamath Proof Explorer


Theorem bnj945

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj945.1 G=fnC
Assertion bnj945 CVfFnnp=sucnAnGA=fA

Proof

Step Hyp Ref Expression
1 bnj945.1 G=fnC
2 fndm fFnndomf=n
3 2 ad2antll CVp=sucnfFnndomf=n
4 3 eleq2d CVp=sucnfFnnAdomfAn
5 4 pm5.32i CVp=sucnfFnnAdomfCVp=sucnfFnnAn
6 1 bnj941 CVp=sucnfFnnGFnp
7 6 imp CVp=sucnfFnnGFnp
8 7 fnfund CVp=sucnfFnnFunG
9 1 bnj931 fG
10 8 9 jctir CVp=sucnfFnnFunGfG
11 10 anim1i CVp=sucnfFnnAdomfFunGfGAdomf
12 5 11 sylbir CVp=sucnfFnnAnFunGfGAdomf
13 df-bnj17 CVfFnnp=sucnAnCVfFnnp=sucnAn
14 3ancomb CVfFnnp=sucnCVp=sucnfFnn
15 3anass CVp=sucnfFnnCVp=sucnfFnn
16 14 15 bitri CVfFnnp=sucnCVp=sucnfFnn
17 16 anbi1i CVfFnnp=sucnAnCVp=sucnfFnnAn
18 13 17 bitri CVfFnnp=sucnAnCVp=sucnfFnnAn
19 df-3an FunGfGAdomfFunGfGAdomf
20 12 18 19 3imtr4i CVfFnnp=sucnAnFunGfGAdomf
21 funssfv FunGfGAdomfGA=fA
22 20 21 syl CVfFnnp=sucnAnGA=fA