Metamath Proof Explorer


Theorem bnj969

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj969.1 φf=predXAR
bnj969.2 ψiωsucinfsuci=yfipredyAR
bnj969.3 χnDfFnnφψ
bnj969.10 D=ω
bnj969.12 C=yfmpredyAR
bnj969.14 τfFnnφψ
bnj969.15 σnDp=sucnmn
Assertion bnj969 RFrSeAXAχn=sucmp=sucnCV

Proof

Step Hyp Ref Expression
1 bnj969.1 φf=predXAR
2 bnj969.2 ψiωsucinfsuci=yfipredyAR
3 bnj969.3 χnDfFnnφψ
4 bnj969.10 D=ω
5 bnj969.12 C=yfmpredyAR
6 bnj969.14 τfFnnφψ
7 bnj969.15 σnDp=sucnmn
8 simpl RFrSeAXAχn=sucmp=sucnRFrSeAXA
9 bnj667 nDfFnnφψfFnnφψ
10 9 3 6 3imtr4i χτ
11 10 3ad2ant1 χn=sucmp=sucnτ
12 11 adantl RFrSeAXAχn=sucmp=sucnτ
13 3 bnj1232 χnD
14 vex mV
15 14 bnj216 n=sucmmn
16 id p=sucnp=sucn
17 13 15 16 3anim123i χn=sucmp=sucnnDmnp=sucn
18 3ancomb nDp=sucnmnnDmnp=sucn
19 7 18 bitri σnDmnp=sucn
20 17 19 sylibr χn=sucmp=sucnσ
21 20 adantl RFrSeAXAχn=sucmp=sucnσ
22 8 12 21 jca32 RFrSeAXAχn=sucmp=sucnRFrSeAXAτσ
23 bnj256 RFrSeAXAτσRFrSeAXAτσ
24 22 23 sylibr RFrSeAXAχn=sucmp=sucnRFrSeAXAτσ
25 4 6 7 1 2 bnj938 RFrSeAXAτσyfmpredyARV
26 5 25 eqeltrid RFrSeAXAτσCV
27 24 26 syl RFrSeAXAχn=sucmp=sucnCV