Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj969.1 | |
|
bnj969.2 | |
||
bnj969.3 | |
||
bnj969.10 | |
||
bnj969.12 | |
||
bnj969.14 | |
||
bnj969.15 | |
||
Assertion | bnj969 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj969.1 | |
|
2 | bnj969.2 | |
|
3 | bnj969.3 | |
|
4 | bnj969.10 | |
|
5 | bnj969.12 | |
|
6 | bnj969.14 | |
|
7 | bnj969.15 | |
|
8 | simpl | |
|
9 | bnj667 | |
|
10 | 9 3 6 | 3imtr4i | |
11 | 10 | 3ad2ant1 | |
12 | 11 | adantl | |
13 | 3 | bnj1232 | |
14 | vex | |
|
15 | 14 | bnj216 | |
16 | id | |
|
17 | 13 15 16 | 3anim123i | |
18 | 3ancomb | |
|
19 | 7 18 | bitri | |
20 | 17 19 | sylibr | |
21 | 20 | adantl | |
22 | 8 12 21 | jca32 | |
23 | bnj256 | |
|
24 | 22 23 | sylibr | |
25 | 4 6 7 1 2 | bnj938 | |
26 | 5 25 | eqeltrid | |
27 | 24 26 | syl | |