Metamath Proof Explorer


Theorem bpos

Description: Bertrand's postulate: there is a prime between N and 2 N for every positive integer N . This proof follows Erdős's method, for the most part, but with some refinements due to Shigenori Tochiori to save us some calculations of large primes. See http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate for an overview of the proof strategy. This is Metamath 100 proof #98. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion bpos NpN<pp2 N

Proof

Step Hyp Ref Expression
1 bpos1 NN64pN<pp2 N
2 eqid n2x+logxxn+94x+logxxn2+log22n=n2x+logxxn+94x+logxxn2+log22n
3 eqid x+logxx=x+logxx
4 simpll N64<N¬pN<pp2 NN
5 simplr N64<N¬pN<pp2 N64<N
6 simpr N64<N¬pN<pp2 N¬pN<pp2 N
7 2 3 4 5 6 bposlem9 N64<N¬pN<pp2 NpN<pp2 N
8 7 pm2.18da N64<NpN<pp2 N
9 nnre NN
10 6nn0 60
11 4nn0 40
12 10 11 deccl 640
13 12 nn0rei 64
14 lelttric N64N6464<N
15 9 13 14 sylancl NN6464<N
16 1 8 15 mpjaodan NpN<pp2 N