Metamath Proof Explorer


Theorem bpos1

Description: Bertrand's postulate, checked numerically for N <_ 6 4 , using the prime sequence 2 , 3 , 5 , 7 , 1 3 , 2 3 , 4 3 , 8 3 . (Contributed by Mario Carneiro, 12-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Assertion bpos1 NN64pN<pp2 N

Proof

Step Hyp Ref Expression
1 elnnuz NN1
2 ax-1 pN<pp2 NN64pN<pp2 N
3 6nn0 60
4 4nn0 40
5 3 4 deccl 640
6 5 nn0rei 64
7 6 a1i N8364
8 8nn0 80
9 3nn0 30
10 8 9 deccl 830
11 10 nn0rei 83
12 11 a1i N8383
13 eluzelre N83N
14 4lt10 4<10
15 6lt8 6<8
16 3 8 4 9 14 15 decltc 64<83
17 16 a1i N8364<83
18 eluzle N8383N
19 7 12 13 17 18 ltletrd N8364<N
20 ltnle 64N64<N¬N64
21 6 13 20 sylancr N8364<N¬N64
22 19 21 mpbid N83¬N64
23 22 pm2.21d N83N64pN<pp2 N
24 83prm 83
25 4 9 deccl 430
26 2nn0 20
27 eqid 43=43
28 4t2e8 42=8
29 3t2e6 32=6
30 26 4 9 27 28 29 decmul1 432=86
31 3lt10 3<10
32 4lt8 4<8
33 4 8 9 9 31 32 decltc 43<83
34 6nn 6
35 3lt6 3<6
36 8 9 34 35 declt 83<86
37 36 orci 83<8683=86
38 2 23 24 25 30 33 37 bpos1lem N43N64pN<pp2 N
39 43prm 43
40 26 9 deccl 230
41 eqid 23=23
42 2t2e4 22=4
43 26 26 9 41 42 29 decmul1 232=46
44 2lt4 2<4
45 26 4 9 9 31 44 decltc 23<43
46 4 9 34 35 declt 43<46
47 46 orci 43<4643=46
48 2 38 39 40 43 45 47 bpos1lem N23N64pN<pp2 N
49 23prm 23
50 1nn0 10
51 50 9 deccl 130
52 eqid 13=13
53 2cn 2
54 53 mullidi 12=2
55 26 50 9 52 54 29 decmul1 132=26
56 1lt2 1<2
57 50 26 9 9 31 56 decltc 13<23
58 26 9 34 35 declt 23<26
59 58 orci 23<2623=26
60 2 48 49 51 55 57 59 bpos1lem N13N64pN<pp2 N
61 13prm 13
62 7nn0 70
63 7t2e14 72=14
64 1nn 1
65 7lt10 7<10
66 64 9 62 65 declti 7<13
67 4nn 4
68 3lt4 3<4
69 50 9 67 68 declt 13<14
70 69 orci 13<1413=14
71 2 60 61 62 63 66 70 bpos1lem N7N64pN<pp2 N
72 7prm 7
73 5nn0 50
74 5t2e10 52=10
75 5lt7 5<7
76 65 orci 7<107=10
77 2 71 72 73 74 75 76 bpos1lem N5N64pN<pp2 N
78 5prm 5
79 3lt5 3<5
80 5lt6 5<6
81 80 orci 5<65=6
82 2 77 78 9 29 79 81 bpos1lem N3N64pN<pp2 N
83 3prm 3
84 2lt3 2<3
85 68 orci 3<43=4
86 2 82 83 26 42 84 85 bpos1lem N2N64pN<pp2 N
87 2prm 2
88 eqid 2=2
89 88 olci 2<22=2
90 2 86 87 50 54 56 89 bpos1lem N1N64pN<pp2 N
91 1 90 sylbi NN64pN<pp2 N
92 91 imp NN64pN<pp2 N