| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
| 2 |
|
ax-1 |
|- ( E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 3 |
|
6nn0 |
|- 6 e. NN0 |
| 4 |
|
4nn0 |
|- 4 e. NN0 |
| 5 |
3 4
|
deccl |
|- ; 6 4 e. NN0 |
| 6 |
5
|
nn0rei |
|- ; 6 4 e. RR |
| 7 |
6
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 e. RR ) |
| 8 |
|
8nn0 |
|- 8 e. NN0 |
| 9 |
|
3nn0 |
|- 3 e. NN0 |
| 10 |
8 9
|
deccl |
|- ; 8 3 e. NN0 |
| 11 |
10
|
nn0rei |
|- ; 8 3 e. RR |
| 12 |
11
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 8 3 e. RR ) |
| 13 |
|
eluzelre |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> N e. RR ) |
| 14 |
|
4lt10 |
|- 4 < ; 1 0 |
| 15 |
|
6lt8 |
|- 6 < 8 |
| 16 |
3 8 4 9 14 15
|
decltc |
|- ; 6 4 < ; 8 3 |
| 17 |
16
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 < ; 8 3 ) |
| 18 |
|
eluzle |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 8 3 <_ N ) |
| 19 |
7 12 13 17 18
|
ltletrd |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 < N ) |
| 20 |
|
ltnle |
|- ( ( ; 6 4 e. RR /\ N e. RR ) -> ( ; 6 4 < N <-> -. N <_ ; 6 4 ) ) |
| 21 |
6 13 20
|
sylancr |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ( ; 6 4 < N <-> -. N <_ ; 6 4 ) ) |
| 22 |
19 21
|
mpbid |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> -. N <_ ; 6 4 ) |
| 23 |
22
|
pm2.21d |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 24 |
|
83prm |
|- ; 8 3 e. Prime |
| 25 |
4 9
|
deccl |
|- ; 4 3 e. NN0 |
| 26 |
|
2nn0 |
|- 2 e. NN0 |
| 27 |
|
eqid |
|- ; 4 3 = ; 4 3 |
| 28 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 29 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 30 |
26 4 9 27 28 29
|
decmul1 |
|- ( ; 4 3 x. 2 ) = ; 8 6 |
| 31 |
|
3lt10 |
|- 3 < ; 1 0 |
| 32 |
|
4lt8 |
|- 4 < 8 |
| 33 |
4 8 9 9 31 32
|
decltc |
|- ; 4 3 < ; 8 3 |
| 34 |
|
6nn |
|- 6 e. NN |
| 35 |
|
3lt6 |
|- 3 < 6 |
| 36 |
8 9 34 35
|
declt |
|- ; 8 3 < ; 8 6 |
| 37 |
36
|
orci |
|- ( ; 8 3 < ; 8 6 \/ ; 8 3 = ; 8 6 ) |
| 38 |
2 23 24 25 30 33 37
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 4 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 39 |
|
43prm |
|- ; 4 3 e. Prime |
| 40 |
26 9
|
deccl |
|- ; 2 3 e. NN0 |
| 41 |
|
eqid |
|- ; 2 3 = ; 2 3 |
| 42 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 43 |
26 26 9 41 42 29
|
decmul1 |
|- ( ; 2 3 x. 2 ) = ; 4 6 |
| 44 |
|
2lt4 |
|- 2 < 4 |
| 45 |
26 4 9 9 31 44
|
decltc |
|- ; 2 3 < ; 4 3 |
| 46 |
4 9 34 35
|
declt |
|- ; 4 3 < ; 4 6 |
| 47 |
46
|
orci |
|- ( ; 4 3 < ; 4 6 \/ ; 4 3 = ; 4 6 ) |
| 48 |
2 38 39 40 43 45 47
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 2 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 49 |
|
23prm |
|- ; 2 3 e. Prime |
| 50 |
|
1nn0 |
|- 1 e. NN0 |
| 51 |
50 9
|
deccl |
|- ; 1 3 e. NN0 |
| 52 |
|
eqid |
|- ; 1 3 = ; 1 3 |
| 53 |
|
2cn |
|- 2 e. CC |
| 54 |
53
|
mullidi |
|- ( 1 x. 2 ) = 2 |
| 55 |
26 50 9 52 54 29
|
decmul1 |
|- ( ; 1 3 x. 2 ) = ; 2 6 |
| 56 |
|
1lt2 |
|- 1 < 2 |
| 57 |
50 26 9 9 31 56
|
decltc |
|- ; 1 3 < ; 2 3 |
| 58 |
26 9 34 35
|
declt |
|- ; 2 3 < ; 2 6 |
| 59 |
58
|
orci |
|- ( ; 2 3 < ; 2 6 \/ ; 2 3 = ; 2 6 ) |
| 60 |
2 48 49 51 55 57 59
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 1 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 61 |
|
13prm |
|- ; 1 3 e. Prime |
| 62 |
|
7nn0 |
|- 7 e. NN0 |
| 63 |
|
7t2e14 |
|- ( 7 x. 2 ) = ; 1 4 |
| 64 |
|
1nn |
|- 1 e. NN |
| 65 |
|
7lt10 |
|- 7 < ; 1 0 |
| 66 |
64 9 62 65
|
declti |
|- 7 < ; 1 3 |
| 67 |
|
4nn |
|- 4 e. NN |
| 68 |
|
3lt4 |
|- 3 < 4 |
| 69 |
50 9 67 68
|
declt |
|- ; 1 3 < ; 1 4 |
| 70 |
69
|
orci |
|- ( ; 1 3 < ; 1 4 \/ ; 1 3 = ; 1 4 ) |
| 71 |
2 60 61 62 63 66 70
|
bpos1lem |
|- ( N e. ( ZZ>= ` 7 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 72 |
|
7prm |
|- 7 e. Prime |
| 73 |
|
5nn0 |
|- 5 e. NN0 |
| 74 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 75 |
|
5lt7 |
|- 5 < 7 |
| 76 |
65
|
orci |
|- ( 7 < ; 1 0 \/ 7 = ; 1 0 ) |
| 77 |
2 71 72 73 74 75 76
|
bpos1lem |
|- ( N e. ( ZZ>= ` 5 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 78 |
|
5prm |
|- 5 e. Prime |
| 79 |
|
3lt5 |
|- 3 < 5 |
| 80 |
|
5lt6 |
|- 5 < 6 |
| 81 |
80
|
orci |
|- ( 5 < 6 \/ 5 = 6 ) |
| 82 |
2 77 78 9 29 79 81
|
bpos1lem |
|- ( N e. ( ZZ>= ` 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 83 |
|
3prm |
|- 3 e. Prime |
| 84 |
|
2lt3 |
|- 2 < 3 |
| 85 |
68
|
orci |
|- ( 3 < 4 \/ 3 = 4 ) |
| 86 |
2 82 83 26 42 84 85
|
bpos1lem |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 87 |
|
2prm |
|- 2 e. Prime |
| 88 |
|
eqid |
|- 2 = 2 |
| 89 |
88
|
olci |
|- ( 2 < 2 \/ 2 = 2 ) |
| 90 |
2 86 87 50 54 56 89
|
bpos1lem |
|- ( N e. ( ZZ>= ` 1 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 91 |
1 90
|
sylbi |
|- ( N e. NN -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
| 92 |
91
|
imp |
|- ( ( N e. NN /\ N <_ ; 6 4 ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |