| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos1.1 |
|- ( E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) -> ph ) |
| 2 |
|
bpos1.2 |
|- ( N e. ( ZZ>= ` P ) -> ph ) |
| 3 |
|
bpos1.3 |
|- P e. Prime |
| 4 |
|
bpos1.4 |
|- A e. NN0 |
| 5 |
|
bpos1.5 |
|- ( A x. 2 ) = B |
| 6 |
|
bpos1.6 |
|- A < P |
| 7 |
|
bpos1.7 |
|- ( P < B \/ P = B ) |
| 8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 9 |
3 8
|
ax-mp |
|- P e. NN |
| 10 |
9
|
nnzi |
|- P e. ZZ |
| 11 |
|
eluzelz |
|- ( N e. ( ZZ>= ` A ) -> N e. ZZ ) |
| 12 |
|
eluz |
|- ( ( P e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` P ) <-> P <_ N ) ) |
| 13 |
10 11 12
|
sylancr |
|- ( N e. ( ZZ>= ` A ) -> ( N e. ( ZZ>= ` P ) <-> P <_ N ) ) |
| 14 |
13 2
|
biimtrrdi |
|- ( N e. ( ZZ>= ` A ) -> ( P <_ N -> ph ) ) |
| 15 |
9
|
nnrei |
|- P e. RR |
| 16 |
15
|
a1i |
|- ( N e. ( ZZ>= ` A ) -> P e. RR ) |
| 17 |
4
|
nn0rei |
|- A e. RR |
| 18 |
|
2re |
|- 2 e. RR |
| 19 |
17 18
|
remulcli |
|- ( A x. 2 ) e. RR |
| 20 |
5 19
|
eqeltrri |
|- B e. RR |
| 21 |
20
|
a1i |
|- ( N e. ( ZZ>= ` A ) -> B e. RR ) |
| 22 |
|
eluzelre |
|- ( N e. ( ZZ>= ` A ) -> N e. RR ) |
| 23 |
|
remulcl |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR ) |
| 24 |
18 22 23
|
sylancr |
|- ( N e. ( ZZ>= ` A ) -> ( 2 x. N ) e. RR ) |
| 25 |
15 20
|
leloei |
|- ( P <_ B <-> ( P < B \/ P = B ) ) |
| 26 |
7 25
|
mpbir |
|- P <_ B |
| 27 |
26
|
a1i |
|- ( N e. ( ZZ>= ` A ) -> P <_ B ) |
| 28 |
4
|
nn0cni |
|- A e. CC |
| 29 |
|
2cn |
|- 2 e. CC |
| 30 |
28 29 5
|
mulcomli |
|- ( 2 x. A ) = B |
| 31 |
|
eluzle |
|- ( N e. ( ZZ>= ` A ) -> A <_ N ) |
| 32 |
|
2pos |
|- 0 < 2 |
| 33 |
18 32
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 34 |
|
lemul2 |
|- ( ( A e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) ) |
| 35 |
17 33 34
|
mp3an13 |
|- ( N e. RR -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) ) |
| 36 |
22 35
|
syl |
|- ( N e. ( ZZ>= ` A ) -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) ) |
| 37 |
31 36
|
mpbid |
|- ( N e. ( ZZ>= ` A ) -> ( 2 x. A ) <_ ( 2 x. N ) ) |
| 38 |
30 37
|
eqbrtrrid |
|- ( N e. ( ZZ>= ` A ) -> B <_ ( 2 x. N ) ) |
| 39 |
16 21 24 27 38
|
letrd |
|- ( N e. ( ZZ>= ` A ) -> P <_ ( 2 x. N ) ) |
| 40 |
39
|
anim2i |
|- ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> ( N < P /\ P <_ ( 2 x. N ) ) ) |
| 41 |
|
breq2 |
|- ( p = P -> ( N < p <-> N < P ) ) |
| 42 |
|
breq1 |
|- ( p = P -> ( p <_ ( 2 x. N ) <-> P <_ ( 2 x. N ) ) ) |
| 43 |
41 42
|
anbi12d |
|- ( p = P -> ( ( N < p /\ p <_ ( 2 x. N ) ) <-> ( N < P /\ P <_ ( 2 x. N ) ) ) ) |
| 44 |
43
|
rspcev |
|- ( ( P e. Prime /\ ( N < P /\ P <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 45 |
3 40 44
|
sylancr |
|- ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 46 |
45 1
|
syl |
|- ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> ph ) |
| 47 |
46
|
expcom |
|- ( N e. ( ZZ>= ` A ) -> ( N < P -> ph ) ) |
| 48 |
|
lelttric |
|- ( ( P e. RR /\ N e. RR ) -> ( P <_ N \/ N < P ) ) |
| 49 |
15 22 48
|
sylancr |
|- ( N e. ( ZZ>= ` A ) -> ( P <_ N \/ N < P ) ) |
| 50 |
14 47 49
|
mpjaod |
|- ( N e. ( ZZ>= ` A ) -> ph ) |