Metamath Proof Explorer


Theorem brcnvtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brcnvtrclfvcnv RUAVBWAt+R-1-1BrR-1rrrrBrA

Proof

Step Hyp Ref Expression
1 cnvexg RUR-1V
2 brcnvtrclfv R-1VAVBWAt+R-1-1BrR-1rrrrBrA
3 1 2 syl3an1 RUAVBWAt+R-1-1BrR-1rrrrBrA