Metamath Proof Explorer


Theorem brcnvtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brcnvtrclfvcnv R U A V B W A t+ R -1 -1 B r R -1 r r r r B r A

Proof

Step Hyp Ref Expression
1 cnvexg R U R -1 V
2 brcnvtrclfv R -1 V A V B W A t+ R -1 -1 B r R -1 r r r r B r A
3 1 2 syl3an1 R U A V B W A t+ R -1 -1 B r R -1 r r r r B r A