Metamath Proof Explorer


Theorem brcog

Description: Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015)

Ref Expression
Assertion brcog AVBWACDBxADxxCB

Proof

Step Hyp Ref Expression
1 breq1 y=AyDxADx
2 breq2 z=BxCzxCB
3 1 2 bi2anan9 y=Az=ByDxxCzADxxCB
4 3 exbidv y=Az=BxyDxxCzxADxxCB
5 df-co CD=yz|xyDxxCz
6 4 5 brabga AVBWACDBxADxxCB