Metamath Proof Explorer


Theorem brfi1ind

Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses brfi1ind.r RelG
brfi1ind.f FV
brfi1ind.1 v=Ve=Eψφ
brfi1ind.2 v=we=fψθ
brfi1ind.3 vGenvvnGF
brfi1ind.4 w=vnf=Fθχ
brfi1ind.base vGev=0ψ
brfi1ind.step y+10vGev=y+1nvχψ
Assertion brfi1ind VGEVFinφ

Proof

Step Hyp Ref Expression
1 brfi1ind.r RelG
2 brfi1ind.f FV
3 brfi1ind.1 v=Ve=Eψφ
4 brfi1ind.2 v=we=fψθ
5 brfi1ind.3 vGenvvnGF
6 brfi1ind.4 w=vnf=Fθχ
7 brfi1ind.base vGev=0ψ
8 brfi1ind.step y+10vGev=y+1nvχψ
9 hashge0 VFin0V
10 9 adantl VGEVFin0V
11 0nn0 00
12 1 2 11 3 4 5 6 7 8 brfi1uzind VGEVFin0Vφ
13 10 12 mpd3an3 VGEVFinφ