Metamath Proof Explorer


Theorem brfi1indALT

Description: Alternate proof of brfi1ind , which does not use brfi1uzind . (Contributed by Alexander van der Vekens, 7-Jan-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses brfi1ind.r RelG
brfi1ind.f FV
brfi1ind.1 v=Ve=Eψφ
brfi1ind.2 v=we=fψθ
brfi1ind.3 vGenvvnGF
brfi1ind.4 w=vnf=Fθχ
brfi1ind.base vGev=0ψ
brfi1ind.step y+10vGev=y+1nvχψ
Assertion brfi1indALT VGEVFinφ

Proof

Step Hyp Ref Expression
1 brfi1ind.r RelG
2 brfi1ind.f FV
3 brfi1ind.1 v=Ve=Eψφ
4 brfi1ind.2 v=we=fψθ
5 brfi1ind.3 vGenvvnGF
6 brfi1ind.4 w=vnf=Fθχ
7 brfi1ind.base vGev=0ψ
8 brfi1ind.step y+10vGev=y+1nvχψ
9 hashcl VFinV0
10 dfclel V0nn=Vn0
11 eqeq2 x=0v=xv=0
12 11 anbi2d x=0vGev=xvGev=0
13 12 imbi1d x=0vGev=xψvGev=0ψ
14 13 2albidv x=0vevGev=xψvevGev=0ψ
15 eqeq2 x=yv=xv=y
16 15 anbi2d x=yvGev=xvGev=y
17 16 imbi1d x=yvGev=xψvGev=yψ
18 17 2albidv x=yvevGev=xψvevGev=yψ
19 eqeq2 x=y+1v=xv=y+1
20 19 anbi2d x=y+1vGev=xvGev=y+1
21 20 imbi1d x=y+1vGev=xψvGev=y+1ψ
22 21 2albidv x=y+1vevGev=xψvevGev=y+1ψ
23 eqeq2 x=nv=xv=n
24 23 anbi2d x=nvGev=xvGev=n
25 24 imbi1d x=nvGev=xψvGev=nψ
26 25 2albidv x=nvevGev=xψvevGev=nψ
27 7 gen2 vevGev=0ψ
28 breq12 v=we=fvGewGf
29 fveqeq2 v=wv=yw=y
30 29 adantr v=we=fv=yw=y
31 28 30 anbi12d v=we=fvGev=ywGfw=y
32 31 4 imbi12d v=we=fvGev=yψwGfw=yθ
33 32 cbval2vw vevGev=yψwfwGfw=yθ
34 nn0p1gt0 y00<y+1
35 34 adantr y0v=y+10<y+1
36 simpr y0v=y+1v=y+1
37 35 36 breqtrrd y0v=y+10<v
38 37 adantrl y0vGev=y+10<v
39 hashgt0elex vV0<vnnv
40 vex vV
41 simpr y0nvnv
42 simpl y0nvy0
43 hashdifsnp1 vVnvy0v=y+1vn=y
44 40 41 42 43 mp3an2i y0nvv=y+1vn=y
45 44 imp y0nvv=y+1vn=y
46 peano2nn0 y0y+10
47 46 ad2antrr y0nvv=y+1y+10
48 47 ad2antlr wfwGfw=yθvnGFy0nvv=y+1vGey+10
49 simpr wfwGfw=yθvnGFy0nvv=y+1vGevGe
50 simplrr wfwGfw=yθvnGFy0nvv=y+1vGev=y+1
51 simprlr wfwGfw=yθvnGFy0nvv=y+1nv
52 51 adantr wfwGfw=yθvnGFy0nvv=y+1vGenv
53 49 50 52 3jca wfwGfw=yθvnGFy0nvv=y+1vGevGev=y+1nv
54 48 53 jca wfwGfw=yθvnGFy0nvv=y+1vGey+10vGev=y+1nv
55 40 difexi vnV
56 breq12 w=vnf=FwGfvnGF
57 fveqeq2 w=vnw=yvn=y
58 57 adantr w=vnf=Fw=yvn=y
59 56 58 anbi12d w=vnf=FwGfw=yvnGFvn=y
60 59 6 imbi12d w=vnf=FwGfw=yθvnGFvn=yχ
61 60 spc2gv vnVFVwfwGfw=yθvnGFvn=yχ
62 55 2 61 mp2an wfwGfw=yθvnGFvn=yχ
63 62 expdimp wfwGfw=yθvnGFvn=yχ
64 63 ad2antrr wfwGfw=yθvnGFy0nvv=y+1vGevn=yχ
65 54 64 8 syl6an wfwGfw=yθvnGFy0nvv=y+1vGevn=yψ
66 65 exp41 wfwGfw=yθvnGFy0nvv=y+1vGevn=yψ
67 66 com15 vn=yvnGFy0nvv=y+1vGewfwGfw=yθψ
68 67 com23 vn=yy0nvv=y+1vnGFvGewfwGfw=yθψ
69 45 68 mpcom y0nvv=y+1vnGFvGewfwGfw=yθψ
70 69 ex y0nvv=y+1vnGFvGewfwGfw=yθψ
71 70 com23 y0nvvnGFv=y+1vGewfwGfw=yθψ
72 71 ex y0nvvnGFv=y+1vGewfwGfw=yθψ
73 72 com15 vGenvvnGFv=y+1y0wfwGfw=yθψ
74 73 imp vGenvvnGFv=y+1y0wfwGfw=yθψ
75 5 74 mpd vGenvv=y+1y0wfwGfw=yθψ
76 75 ex vGenvv=y+1y0wfwGfw=yθψ
77 76 com4l nvv=y+1y0vGewfwGfw=yθψ
78 77 exlimiv nnvv=y+1y0vGewfwGfw=yθψ
79 39 78 syl vV0<vv=y+1y0vGewfwGfw=yθψ
80 79 ex vV0<vv=y+1y0vGewfwGfw=yθψ
81 80 com25 vVvGev=y+1y00<vwfwGfw=yθψ
82 81 elv vGev=y+1y00<vwfwGfw=yθψ
83 82 imp vGev=y+1y00<vwfwGfw=yθψ
84 83 impcom y0vGev=y+10<vwfwGfw=yθψ
85 38 84 mpd y0vGev=y+1wfwGfw=yθψ
86 85 impancom y0wfwGfw=yθvGev=y+1ψ
87 86 alrimivv y0wfwGfw=yθvevGev=y+1ψ
88 87 ex y0wfwGfw=yθvevGev=y+1ψ
89 33 88 syl5bi y0vevGev=yψvevGev=y+1ψ
90 14 18 22 26 27 89 nn0ind n0vevGev=nψ
91 1 brrelex12i VGEVVEV
92 breq12 v=Ve=EvGeVGE
93 fveqeq2 v=Vv=nV=n
94 93 adantr v=Ve=Ev=nV=n
95 92 94 anbi12d v=Ve=EvGev=nVGEV=n
96 95 3 imbi12d v=Ve=EvGev=nψVGEV=nφ
97 96 spc2gv VVEVvevGev=nψVGEV=nφ
98 97 com23 VVEVVGEV=nvevGev=nψφ
99 98 expd VVEVVGEV=nvevGev=nψφ
100 91 99 mpcom VGEV=nvevGev=nψφ
101 100 imp VGEV=nvevGev=nψφ
102 90 101 syl5 VGEV=nn0φ
103 102 expcom V=nVGEn0φ
104 103 com23 V=nn0VGEφ
105 104 eqcoms n=Vn0VGEφ
106 105 imp n=Vn0VGEφ
107 106 exlimiv nn=Vn0VGEφ
108 10 107 sylbi V0VGEφ
109 9 108 syl VFinVGEφ
110 109 impcom VGEVFinφ