| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brfi1ind.r |
⊢ Rel 𝐺 |
| 2 |
|
brfi1ind.f |
⊢ 𝐹 ∈ V |
| 3 |
|
brfi1ind.1 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) |
| 4 |
|
brfi1ind.2 |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 5 |
|
brfi1ind.3 |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) |
| 6 |
|
brfi1ind.4 |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) |
| 7 |
|
brfi1ind.base |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) |
| 8 |
|
brfi1ind.step |
⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
| 9 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
| 10 |
|
dfclel |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ) |
| 11 |
|
eqeq2 |
⊢ ( 𝑥 = 0 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 0 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) ) ) |
| 14 |
13
|
2albidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) ) ) |
| 15 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 𝑦 ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) ) ) |
| 17 |
16
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ) ) |
| 18 |
17
|
2albidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ) ) |
| 19 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ) |
| 21 |
20
|
imbi1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 22 |
21
|
2albidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 23 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑛 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 𝑛 ) ) |
| 24 |
23
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) ) ) |
| 25 |
24
|
imbi1d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) ) |
| 26 |
25
|
2albidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) ) |
| 27 |
7
|
gen2 |
⊢ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) |
| 28 |
|
breq12 |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝑣 𝐺 𝑒 ↔ 𝑤 𝐺 𝑓 ) ) |
| 29 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑤 → ( ( ♯ ‘ 𝑣 ) = 𝑦 ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ♯ ‘ 𝑣 ) = 𝑦 ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) |
| 31 |
28 30
|
anbi12d |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) ↔ ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) ) |
| 32 |
31 4
|
imbi12d |
⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ↔ ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) ) |
| 33 |
32
|
cbval2vw |
⊢ ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ↔ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) |
| 34 |
|
nn0p1gt0 |
⊢ ( 𝑦 ∈ ℕ0 → 0 < ( 𝑦 + 1 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( 𝑦 + 1 ) ) |
| 36 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) |
| 37 |
35 36
|
breqtrrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 38 |
37
|
adantrl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 39 |
|
hashgt0elex |
⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ∃ 𝑛 𝑛 ∈ 𝑣 ) |
| 40 |
|
vex |
⊢ 𝑣 ∈ V |
| 41 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑛 ∈ 𝑣 ) |
| 42 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑦 ∈ ℕ0 ) |
| 43 |
|
hashdifsnp1 |
⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 44 |
40 41 42 43
|
mp3an2i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) |
| 46 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 49 |
|
simpr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → 𝑣 𝐺 𝑒 ) |
| 50 |
|
simplrr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) |
| 51 |
|
simprlr |
⊢ ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → 𝑛 ∈ 𝑣 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → 𝑛 ∈ 𝑣 ) |
| 53 |
49 50 52
|
3jca |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 54 |
48 53
|
jca |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 55 |
40
|
difexi |
⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
| 56 |
|
breq12 |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝑤 𝐺 𝑓 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ) |
| 57 |
|
fveqeq2 |
⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 59 |
56 58
|
anbi12d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) ↔ ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) ) |
| 60 |
59 6
|
imbi12d |
⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ↔ ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 61 |
60
|
spc2gv |
⊢ ( ( ( 𝑣 ∖ { 𝑛 } ) ∈ V ∧ 𝐹 ∈ V ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 62 |
55 2 61
|
mp2an |
⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) |
| 63 |
62
|
expdimp |
⊢ ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 64 |
63
|
ad2antrr |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 65 |
54 64 8
|
syl6an |
⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) |
| 66 |
65
|
exp41 |
⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) ) ) ) |
| 67 |
66
|
com15 |
⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 68 |
67
|
com23 |
⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 69 |
45 68
|
mpcom |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 70 |
69
|
ex |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 71 |
70
|
com23 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 72 |
71
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑛 ∈ 𝑣 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 73 |
72
|
com15 |
⊢ ( 𝑣 𝐺 𝑒 → ( 𝑛 ∈ 𝑣 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 74 |
73
|
imp |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 75 |
5 74
|
mpd |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 76 |
75
|
ex |
⊢ ( 𝑣 𝐺 𝑒 → ( 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 77 |
76
|
com4l |
⊢ ( 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 78 |
77
|
exlimiv |
⊢ ( ∃ 𝑛 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 79 |
39 78
|
syl |
⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 80 |
79
|
ex |
⊢ ( 𝑣 ∈ V → ( 0 < ( ♯ ‘ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 81 |
80
|
com25 |
⊢ ( 𝑣 ∈ V → ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 82 |
81
|
elv |
⊢ ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 83 |
82
|
imp |
⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 84 |
83
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) |
| 85 |
38 84
|
mpd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) |
| 86 |
85
|
impancom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) |
| 87 |
86
|
alrimivv |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) |
| 88 |
87
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 89 |
33 88
|
biimtrid |
⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 90 |
14 18 22 26 27 89
|
nn0ind |
⊢ ( 𝑛 ∈ ℕ0 → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) |
| 91 |
1
|
brrelex12i |
⊢ ( 𝑉 𝐺 𝐸 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 92 |
|
breq12 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑣 𝐺 𝑒 ↔ 𝑉 𝐺 𝐸 ) ) |
| 93 |
|
fveqeq2 |
⊢ ( 𝑣 = 𝑉 → ( ( ♯ ‘ 𝑣 ) = 𝑛 ↔ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ♯ ‘ 𝑣 ) = 𝑛 ↔ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) |
| 95 |
92 94
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) ↔ ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) ) |
| 96 |
95 3
|
imbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ↔ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → 𝜑 ) ) ) |
| 97 |
96
|
spc2gv |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → 𝜑 ) ) ) |
| 98 |
97
|
com23 |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) |
| 99 |
98
|
expd |
⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝐺 𝐸 → ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) ) |
| 100 |
91 99
|
mpcom |
⊢ ( 𝑉 𝐺 𝐸 → ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) |
| 101 |
100
|
imp |
⊢ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) |
| 102 |
90 101
|
syl5 |
⊢ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( 𝑛 ∈ ℕ0 → 𝜑 ) ) |
| 103 |
102
|
expcom |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝑉 𝐺 𝐸 → ( 𝑛 ∈ ℕ0 → 𝜑 ) ) ) |
| 104 |
103
|
com23 |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝑛 ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) ) |
| 105 |
104
|
eqcoms |
⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) ) |
| 106 |
105
|
imp |
⊢ ( ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 107 |
106
|
exlimiv |
⊢ ( ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 108 |
10 107
|
sylbi |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 109 |
9 108
|
syl |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 110 |
109
|
impcom |
⊢ ( ( 𝑉 𝐺 𝐸 ∧ 𝑉 ∈ Fin ) → 𝜑 ) |