Metamath Proof Explorer


Theorem opfi1uzind

Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses opfi1uzind.e EV
opfi1uzind.f FV
opfi1uzind.l L0
opfi1uzind.1 v=Ve=Eψφ
opfi1uzind.2 v=we=fψθ
opfi1uzind.3 veGnvvnFG
opfi1uzind.4 w=vnf=Fθχ
opfi1uzind.base veGv=Lψ
opfi1uzind.step y+10veGv=y+1nvχψ
Assertion opfi1uzind VEGVFinLVφ

Proof

Step Hyp Ref Expression
1 opfi1uzind.e EV
2 opfi1uzind.f FV
3 opfi1uzind.l L0
4 opfi1uzind.1 v=Ve=Eψφ
5 opfi1uzind.2 v=we=fψθ
6 opfi1uzind.3 veGnvvnFG
7 opfi1uzind.4 w=vnf=Fθχ
8 opfi1uzind.base veGv=Lψ
9 opfi1uzind.step y+10veGv=y+1nvχψ
10 1 a1i a=VEV
11 opeq12 a=Vb=Eab=VE
12 11 eleq1d a=Vb=EabGVEG
13 10 12 sbcied a=V[˙E/b]˙abGVEG
14 13 sbcieg VFin[˙V/a]˙[˙E/b]˙abGVEG
15 14 biimparc VEGVFin[˙V/a]˙[˙E/b]˙abG
16 15 3adant3 VEGVFinLV[˙V/a]˙[˙E/b]˙abG
17 vex vV
18 vex eV
19 opeq12 a=vb=eab=ve
20 19 eleq1d a=vb=eabGveG
21 17 18 20 sbc2ie [˙v/a]˙[˙e/b]˙abGveG
22 21 6 sylanb [˙v/a]˙[˙e/b]˙abGnvvnFG
23 17 difexi vnV
24 opeq12 a=vnb=Fab=vnF
25 24 eleq1d a=vnb=FabGvnFG
26 23 2 25 sbc2ie [˙vn/a]˙[˙F/b]˙abGvnFG
27 22 26 sylibr [˙v/a]˙[˙e/b]˙abGnv[˙vn/a]˙[˙F/b]˙abG
28 21 8 sylanb [˙v/a]˙[˙e/b]˙abGv=Lψ
29 21 3anbi1i [˙v/a]˙[˙e/b]˙abGv=y+1nvveGv=y+1nv
30 29 anbi2i y+10[˙v/a]˙[˙e/b]˙abGv=y+1nvy+10veGv=y+1nv
31 30 9 sylanb y+10[˙v/a]˙[˙e/b]˙abGv=y+1nvχψ
32 2 3 4 5 27 7 28 31 fi1uzind [˙V/a]˙[˙E/b]˙abGVFinLVφ
33 16 32 syld3an1 VEGVFinLVφ