Metamath Proof Explorer


Theorem brfldext

Description: The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023)

Ref Expression
Assertion brfldext EFieldFFieldE/FldExtFF=E𝑠BaseFBaseFSubRingE

Proof

Step Hyp Ref Expression
1 simpl e=Ef=Fe=E
2 1 eleq1d e=Ef=FeFieldEField
3 simpr e=Ef=Ff=F
4 3 eleq1d e=Ef=FfFieldFField
5 2 4 anbi12d e=Ef=FeFieldfFieldEFieldFField
6 3 fveq2d e=Ef=FBasef=BaseF
7 1 6 oveq12d e=Ef=Fe𝑠Basef=E𝑠BaseF
8 3 7 eqeq12d e=Ef=Ff=e𝑠BasefF=E𝑠BaseF
9 1 fveq2d e=Ef=FSubRinge=SubRingE
10 6 9 eleq12d e=Ef=FBasefSubRingeBaseFSubRingE
11 8 10 anbi12d e=Ef=Ff=e𝑠BasefBasefSubRingeF=E𝑠BaseFBaseFSubRingE
12 5 11 anbi12d e=Ef=FeFieldfFieldf=e𝑠BasefBasefSubRingeEFieldFFieldF=E𝑠BaseFBaseFSubRingE
13 df-fldext /FldExt=ef|eFieldfFieldf=e𝑠BasefBasefSubRinge
14 12 13 brabga EFieldFFieldE/FldExtFEFieldFFieldF=E𝑠BaseFBaseFSubRingE
15 14 bianabs EFieldFFieldE/FldExtFF=E𝑠BaseFBaseFSubRingE