Metamath Proof Explorer


Theorem brmptiunrelexpd

Description: If two elements are connected by an indexed union of relational powers, then they are connected via n instances the relation, for some n . Generalization of dfrtrclrec2 . (Contributed by RP, 21-Jul-2020)

Ref Expression
Hypotheses brmptiunrelexpd.c C = r V n N r r n
brmptiunrelexpd.r φ R V
brmptiunrelexpd.n φ N 0
Assertion brmptiunrelexpd φ A C R B n N A R r n B

Proof

Step Hyp Ref Expression
1 brmptiunrelexpd.c C = r V n N r r n
2 brmptiunrelexpd.r φ R V
3 brmptiunrelexpd.n φ N 0
4 nn0ex 0 V
5 4 ssex N 0 N V
6 3 5 syl φ N V
7 1 briunov2 R V N V A C R B n N A R r n B
8 2 6 7 syl2anc φ A C R B n N A R r n B