Metamath Proof Explorer


Theorem brressn

Description: Binary relation on a restriction to a singleton. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion brressn B V C W B R A C B = A B R C

Proof

Step Hyp Ref Expression
1 brres C W B R A C B A B R C
2 1 adantl B V C W B R A C B A B R C
3 elsng B V B A B = A
4 3 adantr B V C W B A B = A
5 4 anbi1d B V C W B A B R C B = A B R C
6 2 5 bitrd B V C W B R A C B = A B R C