Metamath Proof Explorer


Theorem btwncomand

Description: Deduction form of btwncom . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses btwncomand.1 φ N
btwncomand.2 φ A 𝔼 N
btwncomand.3 φ B 𝔼 N
btwncomand.4 φ C 𝔼 N
btwncomand.5 φ ψ A Btwn B C
Assertion btwncomand φ ψ A Btwn C B

Proof

Step Hyp Ref Expression
1 btwncomand.1 φ N
2 btwncomand.2 φ A 𝔼 N
3 btwncomand.3 φ B 𝔼 N
4 btwncomand.4 φ C 𝔼 N
5 btwncomand.5 φ ψ A Btwn B C
6 btwncom N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B
7 1 2 3 4 6 syl13anc φ A Btwn B C A Btwn C B
8 7 adantr φ ψ A Btwn B C A Btwn C B
9 5 8 mpbid φ ψ A Btwn C B