Metamath Proof Explorer


Theorem btwncomim

Description: Betweenness commutes. Implication version. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwncomim NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB

Proof

Step Hyp Ref Expression
1 btwntriv2 NA𝔼NC𝔼NCBtwnAC
2 1 3adant3r2 NA𝔼NB𝔼NC𝔼NCBtwnAC
3 simpl NA𝔼NB𝔼NC𝔼NN
4 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
5 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
6 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
7 axpasch NB𝔼NA𝔼NC𝔼NA𝔼NC𝔼NABtwnBCCBtwnACx𝔼NxBtwnAAxBtwnCB
8 3 4 5 6 5 6 7 syl132anc NA𝔼NB𝔼NC𝔼NABtwnBCCBtwnACx𝔼NxBtwnAAxBtwnCB
9 2 8 mpan2d NA𝔼NB𝔼NC𝔼NABtwnBCx𝔼NxBtwnAAxBtwnCB
10 simpll NA𝔼NB𝔼NC𝔼Nx𝔼NN
11 simpr NA𝔼NB𝔼NC𝔼Nx𝔼Nx𝔼N
12 simplr1 NA𝔼NB𝔼NC𝔼Nx𝔼NA𝔼N
13 axbtwnid Nx𝔼NA𝔼NxBtwnAAx=A
14 10 11 12 13 syl3anc NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAx=A
15 breq1 x=AxBtwnCBABtwnCB
16 15 biimpd x=AxBtwnCBABtwnCB
17 14 16 syl6 NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnCBABtwnCB
18 17 impd NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnCBABtwnCB
19 18 rexlimdva NA𝔼NB𝔼NC𝔼Nx𝔼NxBtwnAAxBtwnCBABtwnCB
20 9 19 syld NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB