Metamath Proof Explorer


Theorem btwncomim

Description: Betweenness commutes. Implication version. Theorem 3.2 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwncomim N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B

Proof

Step Hyp Ref Expression
1 btwntriv2 N A 𝔼 N C 𝔼 N C Btwn A C
2 1 3adant3r2 N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A C
3 simpl N A 𝔼 N B 𝔼 N C 𝔼 N N
4 simpr2 N A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
5 simpr1 N A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
6 simpr3 N A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
7 axpasch N B 𝔼 N A 𝔼 N C 𝔼 N A 𝔼 N C 𝔼 N A Btwn B C C Btwn A C x 𝔼 N x Btwn A A x Btwn C B
8 3 4 5 6 5 6 7 syl132anc N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C C Btwn A C x 𝔼 N x Btwn A A x Btwn C B
9 2 8 mpan2d N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C x 𝔼 N x Btwn A A x Btwn C B
10 simpll N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N N
11 simpr N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x 𝔼 N
12 simplr1 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N A 𝔼 N
13 axbtwnid N x 𝔼 N A 𝔼 N x Btwn A A x = A
14 10 11 12 13 syl3anc N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x Btwn A A x = A
15 breq1 x = A x Btwn C B A Btwn C B
16 15 biimpd x = A x Btwn C B A Btwn C B
17 14 16 syl6 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x Btwn A A x Btwn C B A Btwn C B
18 17 impd N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x Btwn A A x Btwn C B A Btwn C B
19 18 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N x Btwn A A x Btwn C B A Btwn C B
20 9 19 syld N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B