Metamath Proof Explorer


Theorem btwnnz

Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion btwnnz AA<BB<A+1¬B

Proof

Step Hyp Ref Expression
1 zltp1le ABA<BA+1B
2 peano2z AA+1
3 zre A+1A+1
4 2 3 syl AA+1
5 zre BB
6 lenlt A+1BA+1B¬B<A+1
7 4 5 6 syl2an ABA+1B¬B<A+1
8 1 7 bitrd ABA<B¬B<A+1
9 8 biimpd ABA<B¬B<A+1
10 9 impancom AA<BB¬B<A+1
11 10 con2d AA<BB<A+1¬B
12 11 3impia AA<BB<A+1¬B