Metamath Proof Explorer


Theorem gtndiv

Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion gtndiv ABB<A¬BA

Proof

Step Hyp Ref Expression
1 0z 0
2 nnre BB
3 2 3ad2ant2 ABB<AB
4 simp1 ABB<AA
5 nngt0 B0<B
6 5 3ad2ant2 ABB<A0<B
7 5 adantl AB0<B
8 0re 0
9 lttr 0BA0<BB<A0<A
10 8 9 mp3an1 BA0<BB<A0<A
11 2 10 sylan BA0<BB<A0<A
12 11 ancoms AB0<BB<A0<A
13 7 12 mpand ABB<A0<A
14 13 3impia ABB<A0<A
15 3 4 6 14 divgt0d ABB<A0<BA
16 simp3 ABB<AB<A
17 1re 1
18 ltdivmul2 B1A0<ABA<1B<1A
19 17 18 mp3an2 BA0<ABA<1B<1A
20 3 4 14 19 syl12anc ABB<ABA<1B<1A
21 recn AA
22 21 mullidd A1A=A
23 22 breq2d AB<1AB<A
24 23 3ad2ant1 ABB<AB<1AB<A
25 20 24 bitrd ABB<ABA<1B<A
26 16 25 mpbird ABB<ABA<1
27 0p1e1 0+1=1
28 26 27 breqtrrdi ABB<ABA<0+1
29 btwnnz 00<BABA<0+1¬BA
30 1 15 28 29 mp3an2i ABB<A¬BA