Metamath Proof Explorer


Theorem gtndiv

Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion gtndiv A B B < A ¬ B A

Proof

Step Hyp Ref Expression
1 0z 0
2 nnre B B
3 2 3ad2ant2 A B B < A B
4 simp1 A B B < A A
5 nngt0 B 0 < B
6 5 3ad2ant2 A B B < A 0 < B
7 5 adantl A B 0 < B
8 0re 0
9 lttr 0 B A 0 < B B < A 0 < A
10 8 9 mp3an1 B A 0 < B B < A 0 < A
11 2 10 sylan B A 0 < B B < A 0 < A
12 11 ancoms A B 0 < B B < A 0 < A
13 7 12 mpand A B B < A 0 < A
14 13 3impia A B B < A 0 < A
15 3 4 6 14 divgt0d A B B < A 0 < B A
16 simp3 A B B < A B < A
17 1re 1
18 ltdivmul2 B 1 A 0 < A B A < 1 B < 1 A
19 17 18 mp3an2 B A 0 < A B A < 1 B < 1 A
20 3 4 14 19 syl12anc A B B < A B A < 1 B < 1 A
21 recn A A
22 21 mulid2d A 1 A = A
23 22 breq2d A B < 1 A B < A
24 23 3ad2ant1 A B B < A B < 1 A B < A
25 20 24 bitrd A B B < A B A < 1 B < A
26 16 25 mpbird A B B < A B A < 1
27 0p1e1 0 + 1 = 1
28 26 27 breqtrrdi A B B < A B A < 0 + 1
29 btwnnz 0 0 < B A B A < 0 + 1 ¬ B A
30 1 15 28 29 mp3an2i A B B < A ¬ B A